SUGI 30 Data Warehousing, Management and Quality

Paper 101-30

The SQL Optimizer Project: Method and _Tree in SAS®9.1

Russ Lavery
(Thanks to Paul Sherman)

ABSTRACT

This paper discusses two little known options of SAS® Proc SQL: _method and _tree. The main body of information,
and the major opportunity to learn about the topics, exists in the heavily annotated appendix. Efficient use of this
material might involve reading, and printing, this paper then working through the appendix. This paper will also
attempt to describe some of the logic that the Optimizer employs.

Proc SQL has a powerful subroutine, the SQL Optimizer, that examines submitted SQL code and the state of the
system (file size, index presence, buffersize, sort order etc). The SQL Optimizer creates a “run plan” for optimally
running the query. Run plans describe executable programs that the Optimizer will create to produce the desired
output. These executable programs can be quite complicated and often involve the creating, sorting and merging of
many temporary files. Consistent with the Optimizer’'s goal of minimizing run times, the executable programs will trim
variables and observations from the input file(s)/working file(s) as soon as they can be removed.

Many details of the run plan can be determined by using two Proc SQL options (_Method and _Tree) and this paper
explains output from these two options. _Method and _Tree produce different output that present different aspects of
the run plan. Learning to interpret _Method and _Tree can help programmers explain why small variations in code, or
system conditions, can cause substantial variations in run time.

INTRODUCTION

This paper introduces two little known options of SAS Proc SQL: _Method and _Tree. The majority of the information,
and the opportunity to learn about the topics, exists in the heavily annotated appendix. Reading the appendix is
strongly recommended.

In SQL, you tell SQL what you want for results, not how you want the results produced. SAS SQL has a powerful
subroutine, the SQL Optimizer, that decides how the SQL query should be executed in order to minimize run time.
The Optimizer examines submitted SQL code and characteristics of the SAS system and then creates efficient
executable statements for the submitted query. The created code can be quite complicated and often involves the
creating, sorting and merging of many temporary files as well as the trimming of variables and observation at times
that will minimize run time.

All versions of SQL have Optimizers and, while they perform very well, performance can sometimes be improved by
manual intervention (AKA different coding of the query). Tuning SQL, or coding for optimum SQL efficiency, requires
that the programmer understanding the logic of the Optimizer’s choices and to change her/his submitted code in a
way that allows the Optimizer to make better choices. Basic to the tuning process is the understanding of what the
Optimizer did when it ran a “too slow” SQL Query. _Method and _Tree show much of this information.

Unfortunately _Method and _Tree options produce large amounts of output. This paper will present an overview of
the subject and the reader is encouraged to work thorough the annotated logs in the appendix of this paper (included
on the on the CD). The annotated log files, in the appendix, is one of the larger, more detailed, collections of
annotated _Method and _Tree output.

This is part of a planned series of papers on the SAS SQL Optimizer. The papers will build on each other and,
hopefully, create a coherent body of knowledge on the Optimizer.

Page 1 of 57

SUGI 30 Data Warehousing, Management and Quality

THE LIST OF KNOWN MESSAGES AND BASIC SQL PROCESSES

_Method and _Tree will show much about how a query executed, but use many abbreviations to indicate SAS SQL
processes. In order to understand the cost penalties/implications of a particular execution plan, we must understand
the abbreviations and some of the details of the processes used by SAS SQL.

A comment on, and apology for, the incomplete nature of this paper is in order. It is only too likely that the Optimizer
currently has more subtlety than has been uncovered by the author and presented here. Additionally, SAS Inc. is
constantly improving its products. As time goes by, the Optimizer will only become more powerful and more subtle
and this paper will only become more incomplete.

TOP-TO-BOTTOM READ:

In certain situations SQL will perform a top to bottom read of the data. It will often do so in a query that does not have
a where clause, or has a where clause without a usable index. The query might not have a usable index because 1)
there is no index on the variable in the where clause, or 2) the code/syntax in the where clause might have prevented
the Optimizer from using the index. SAS has put lots of time into making a top-to-bottom read fast and has been
successful. Each read of a single observation is fast, but when millions of observations must be read, the total time (
time=Number of Obs. * seconds per observation read) can still be unacceptably long.

Here are two examples of queries that will be executed in a top to bottom read.

Proc sql; Proc sql;/*no index on sub*/
Sel ect * fromdsn; Sel ect * fromdsn

VWHERE SUB="001";

EQUIJOIN

An equijoin is the name for a join that has an equality in the where clause. SAS has not implemented the code that
an academic might consider a “true equijoin” however it has some fast techniques that the Optimizer can use on
equality relationships. As a result, the SQL Optimizer is often able to process equijoins quickly. Some SUGI/NESUG
articles have shown techniques to speed up queries by converting them to equijoins.

Proc sql;/*Equijoi n*/ Proc sql;/*not an Equij oi n*/

Select * fromdsn Sel ect * fromdsn

VWHERE SUB="001"; VWHERE SUB LE ”001”;

Proc SQ.; /*Equijioin*/ Proc SQ.; /*not Equij oi n*/

SELECT L. SUBJID, L.NAMVE, R AGE SELECT L. NAME, L.Age, R Nanme, R Age
FROM LeftT as L, Right as R FROM Left as L, RightT as R

Where L.subjid=r.subjid; Where L. Age GE R Age;

SQL, whenever it thinks it can save time, pushes operations down to lower SAS processes. In simple cases of an
equijoin, like where Age=5, the where clause can be pushed down to the data engine. The data engine will perform
this equijoin (think of it as passing only obs where Age=5) and pass the result to SQL. If the where clause contains
code like where age*12=60, the observation would be brought into SQL The multiplication and filter happen in SQL.
The data engine is usually not smart enough to perform multiplication/division and similar operations.

CARTESIAN PRODUCT OR STEP-LOOP JOIN

Consider merging two tables (LeftT and RightT) in a SQL from clause, one table on the left (LeftT) of the comma and
one on the right (RightT). LeftT stands for the table on the left of the comma and RightT stands for the table on the
right of the comma. Cartesian products and step loops are related merging processes and the SQL Optimizer
employs them as a last resort. They are slow and very much to be avoided.

For these processes, a page of data is first read from the left table and then as much data as can fit in memory is
read from the right table. All merges are made (between any observation in the page from LeftT and all observations
in memory that came from RightT). The results are then output. Then the observations from RightT are flushed from
memory and a new read of RightT pulls in as many observations as can fit in memory. All possible matches are made
(between any observation in the page from LeftT and all observations in memory that came from RightT) and results
are output. This process continues until SQL has looped through all of the table RightT.

Page 2 of 57

SUGI 30 Data Warehousing, Management and Quality

Then SQL takes a step in the left table and reads a new page of data from LeftT into memory. The process of
looping through right table is repeated for the second page from the left table. Then a third page is read from the left
table and the looping through the right hand table is performed again. The process continues until all the
observations in the left table have been read and matched against every observation in the right hand table.

If there is a where clause in the query, it will be applied before the observations are output. SQL joins that are not
based on an equality are candidates for the step loop process processes and are therefore to be avoided.

Proc sql; Proc sql;/*no index on sub*/
Select * fromLeftT, RightT,; Select * fromLeftT, RightT
Where LeftT.sub < Ri ghtT. sub;

Both examples above are likely to be executed using a step-loop join (depending on system conditions and the
decision of the SQL Optimizer).

INDEX JOIN

Even if an index exists on a variable in the where clause, the where clause (the code used for the query logic) can
“prevent” the Optimizer from using the index. Additionally, even if the index exists and the code in the where clause
does not disable the index, the Optimizer may decide not to use the index. The decision logic for the Optimizer is
complex, but a firm index rule is: if index merge will return more than 15% of the indexed file to the result file, the
index should not be used. In this case, there is a faster way to perform the query and the Optimzer will look for it.
The Optimizer (or the data engine) can access metadata and will estimate output file sizes.

In the case of a one file select (see left box below) the Optimzer checks the percentage of observations that come
from PA and their distribution in the file. If the Percentage is small, SQL reads the index file on the indexed variable
“state”. It locates the desired level(s) of “state” in the index and reads, from that index-observation, the hard drive
page number(s) that contain observations where state="PA”. In order, the page number(s) are retrieved from the
index, page number(s) are passed to the disc controller and data is sent back to the CPU. As each page of
observations is received by the CPU, it is parsed and observations with state="PA” are passed back to the working
file for the query. SAS keeps track of the most recently read page, as a technique to minimize disk reads. If a page
contains several observations that meet the where clause (e.g. state="PA”), a new page will not be read from the hard
drive until all the observations in that page from PA have been sent to the query working file.

In an index merge of two files (see right box below), an index exists and the where clause code must be written in a
way that allows the SQL Optimizer to use it. In the appendix, several different queries are used to test how indexes
are used by the SQL Optimizer. The basic process for index join is that one file is read from top to bottom and the
matching observations in are read from the other file via an index lookup.

Proc sql;/*index on state*/ Proc sql;/*L_I _sub indexed in LeftT*/
Select * fromLeftT Select * fromLeftT , R ghtT
Wher e stat e="PA”; Where Lft _tbl.L | _sub = Rgt_tbl.subj

For more of an explanation of the process in the right box above; Assume two tables, LeftT and RightT, with an index
on the variable L_|_sub in LeftT. The basic index merge process is that we are reading the right file from top to
bottom and using an index to find observation(s) with matching subject Ids from left.

1) Select the next observation from RightT (at start, this is the first observation in the data set)
-if end of file, stop

2) Pass subj from RightT to the SAS index subroutine

3) Search the index on the variable L_I_sub in the file LeftT for the value of subj

4) If found, go to disk and return the required fields for that observation from LeftT
- output and go to 1)
5) If not found — go to 1)

Page 3 of 57

SUGI 30 Data Warehousing, Management and Quality

If the information required by the query is in the index file itself the Optimizer will simply access the index, and not
proceed to access the file associated with the index. This situation usually arises in queries when the where clause
tests for existence of a match in another file (where a value in the variable subj in RightT is also in LeftT and Left T
has an index on subj). The fact that the Optimizer has automated this speed feature is just one indication of the level
of detail that has gone into the designing and programming Optimizer, and of the difficulty of understanding it.

HASHING JOIN

Hashing can be a very fast technique and is automatically considered by the Optimizer. SQL hashing has been
installed since V6.08 but since the Optimizer evaluates, and implements, the hashing technique without the
programmer’s intervention, its existence is not well known. General information on Hashing can be found in articles by
Dr. Paul Dorfman in SUGI and NESUG online proceedings.

Hashing will not be considered as a join technique unless certain conditions are met. The SQL Optimizer accesses
metadata on the file and “takes a good guess” at the size of the files it needs to join. After removing unneeded
observations and variables, the Optimizer checks to see if 1% of the smaller of the two files being joined will fit into
one memory buffer. If the smaller file appears to fit, the Optimizer will attempt a hash join. If the smaller file is too
large, in relation to the buffer size, hashing will not be selected. A programmer can influence the Optimizer’s choice
of hashing as a merge technique by manually changing the buffer size with a SAS option.

SQL performs a hash join in the following way. The SQL Optimizer determines which of the two tables is smaller
(after keeping only the appropriate variables from the select statement) and checks that smaller table size against the
buffer. If the table meets the size criteria, it is loaded into a tree-like structure (a hash table) in memory. The structure
of the hash object and the fact that is memory resident, allows for very fast searching. Then SQL processes the large
file, from top to bottom, and for every observation that satisfies the where clause, it performs a HASH table lookup for
the observation. Details of “data step” hashing are given in an article titled “An Annotated Guide: Resource use of
common SAS Procedures” in the NESUG 2004 proceedings.

HASH & INDEX & WHERE USE

The Optimizer will dynamically adjust to new information. In certain situations it will switch from one join method to
another-in the middle of execution - and create a hybrid join method. One such example is in the appendix (see
examples 9A to 9D) and indicates that SQL simultaneously used a hash join and an index to produce the results of
the query.

What happened is that, after tentatively trimming rows and columns from both files, the Optimizer estimated that 1%,
of the smaller of the files being joined, would fit in a buffer. This is a strong hint/instruction for the Optimizer to use a
hash join and so SQL loaded the smaller table into a hash table.

The Optimizer, as the hash table was being created, counted the number of unique key-variable values being loaded
into the hash table. The number of unique values loaded into the hash table was found to be a small number (maybe
below 1024) and the Optimizer dynamically changed the plan to take account of this information. In general, if there
are fairly few unique values key in the hash table, the Optimizer will take the values from the hash table and use them
to build an “in” phrase for a where clause (e.g. where state in(“PA”, “TX")).

SQL will then use the where clause to select observations but the Optimizer will again re-evaluate it's options in light
of currently known information. The method selected for the join can be a top to bottom read or an indexed lookup.
This adjustment of code to the details of a particular query is complex, dynamic and automatic. It can be seen in
examples 9A to 9D.

SORT MERGE JOIN

This is similar, but not identical to, the data step merge. Under certain situations, the Optimizer determines that the

fastest way to execute the query is to sort the tables and process both tables from top to bottom, using a merge that
is similar (only similar) to that used by the DATA Step. This SQL merge will produce a Cartesian product, unlike the
data step merge, and it does this by looping within the BY-group variables. SQL processes a page of data from the

left table and loops through the appropriate by group right table.

GROUPING
Grouping, or aggregating observations, is a multi-step process and can take some time.

Page 4 of 57

SUGI 30 Data Warehousing, Management and Quality

SELECT

Select statements specifies variables in the final data set. The optimizer, as part of it's run plan, creates “temporary
working files” that are called result sets. Select logic is executed dynamically and as early as possible, keeping results
sets small.

In the code below, only the variables name, age and sex are all brought into the original SQL query space (AKA result
set). This initial removal of variables (height, weight) is handled by the data step engine and functions much like a
keep option on a data set. Height and weight never become part of a SQL result set.

Observations with sex NE “M” are filtered out during the initial read of the data and that variable (sex) is eliminated
from the query space, by the Optimizer, after completion of the read. After the completion of the first read, the result
set contains name and age. The result set is then sorted (by calling Proc Sort) by age. After the data is sorted age is
not required and the Optimizer eliminates that variable from the result set.

proc sql _nethod _tree;
create table | ookat as sel ect nane from sashel p. cl ass
where sex="M order by age;

As the above explanation details, the Optimizer has automated “Good Programming Practices” and eliminates both
variables, and observations, as soon as it can.

HAVING
The having statement is very useful to SQL programmers but requires that SQL perform several steps. Please
examine the code below.
proc sqgl _nethod _tree;
title "this illustrates a having cl ause”;
sel ect nane, sex, age
from sashel p. cl ass
group by sex
havi ng age=max(age);
quit;
In the code above, SQL must process the entire table sashelp.class, reading in the only the three variables in the
select clause. SQL stores the observations in a result set (a temporary table that the SQL Optimizer directs be
created). Then SQL makes a pass through the temporary table to find the max age, within each group, and tries to
store that information in a “pipe line”. As a speed/storage technique, the Optimizer tries to avoid the creation of
temporary files.

Sometimes applying a “having” requires additional passes through the working data set (AKA the result set) to check
the having criteria against each observation. If there is no Note in the log mentioning re-merging, the Optimizer was
able to produce the desired result in one pass using “pipe lines” to apply the having criteria. The query above
produces the log below, where the word remerging indicates an additional pass was required to find the observations
with the maximum age for each gender.

NOTE: The query requires renmergi ng sunmary statistics back with the original data.
NOTE: SQ. execution nethods chosen are:
sgxsl ct
sgxsung
sgxsort
sqgxsrc(SASHELP. CLASS)

DISTINCT

SQL usually implements distinct-ing by passing the result set to a Proc Sort with a nodup/nodupkey option. Distinct-
ing is usually performed late in the query process as an additional pass through the data. This is a sorting and sorts
are to be avoided because they take both time and space.

Under certain conditions (see examples 6A - 6D), the Optimizer can eliminate this last pass through if the query is
distinct-ing a variable that has a unique index. The elimination of the distinct-ing saves time. There is an example of
this, in compare-and-contrast format, in the appendix. It would be appropriate to use this as an example of how much
effort has been put into making the Optimizer produce fast code. This situation does not happen often but the
Optimizer has logic to help the programmer when it occurs.

Page 5 of 57

SUGI 30 Data Warehousing, Management and Quality

UNCORRELATED SUB-QUERY

The code in an uncorrelated sub-query is processed just once by the SQL Optimzer. The results of this first
evaluation are held in a result set until they are needed by the outer query. The code below is an example of an
uncorrelated query. The result sets L and R are created once and accessed many times.

proc sql _nethod _tree;
*title show inner join nerge using a comms;

create table ex5 as
sel ect coal esce (l.name, r.nane) as nane
FROM (sel ect Name, Height from sashelp.tlass) AS L Uncorrelated

! Inner Queries
(select Nanme, sex from sashel p.class) as R .
or sub-queries

where | .nane =r.nane;

CORRELATED SUB-QUERY

A Correlated sub-query is processed differently from an un-correlated sub-query and again shows the power of the
SQL Optimizer. A correlated sub-query uses information from each of the observations in the outer query to drive a
“look up” process (a SQL query) against another table. In the worst case, SQL might have to execute the “look up
process” for each row in the outer table. The look-up might have to be executed for every observation in the outer
query but the Optimizer creates code that avoids that, whenever possible.

In the query below, as SQL processes each observation in the outer query, it seems to be passing the gender to the
subquery and asking the subquery to find the maximum age for the current (in outer) value of gender. In fact, the
Optimizer will process the sub-query for the first observation and store the results in a result set that is both temporary
and indexed.

When additional observations from “outer” are processed the Optimizer first tries to find the needed information (in
this case, has SQL calculated max age for that sex before) in the temporary, indexed result set. If it can find the
required information in the temporary indexed result set, it takes information from the temporary indexed result set
and does not execute the sub-query. If the information is not in the temporary indexed result set, SQL will run the
sub-query, pass results to the outer query and then add the results of the query to the indexed result set. The
temporary indexed result set grows in size as unique values of the equality variable are found in the outer file. When
the query is done, the temporary indexed result set is deleted from the work library. The query below produces the
_method output that follows it.

proc sql _METHOD _TREE;

TITLE "A SI MPLE CORRELATED QUERY";

select * from sashel p.class as Quter é}uter Query

Where CQuter.ACE =
(sel ect Max(age) from sashel p.class as inner
wher e out er. sex=i nner. sex);

Correlatedsub- query

quit;
NOTE: SQ. execution nethods chosen are:
Sgxsl ct
Soxfi l

sgxsrc(SASHELP. CLASS(al ias = QUTER))
NOTE: SQ. subquery execution nethods chosen are:

Sgxsubq
Sgxsum

sqgxsrc(SASHELP. CLASS(al i as = | NNER)

Page 6 of 57

SUGI 30

Data Warehousing, Management and Quality

SIMPLE SUBSETTING LOGIC

For a one file SQL query, as shown below, the Optimizer must first decide if it should push the where down to the
data engine or handle it in SQL. The Optimizer’s second decision is between using an index or a top-to-bottom read.
The Optimizer has access to metadata on the file. The Optimizer considers both the percent of the file that will be
returned and the distribution of the values in the file as it creates a plan to minimize run time.

Proc sql;/*index on state*/ Top to bottom read
Sel ect * fromLeftT
Where state="PA”; t[;ce’es N 4
where YES NO
Does the base L1 NO H» syntax T
engine handle the disable
subsetting? ind Does query
Inaex I NO P reun LE15% || vEs Index lookup
VES of the DSET and
I~ isthe data “well
Not covered dictribhitad”

The Optimizer has the ability to examine the metadata for the table and determine information useful for running the
query. The metadata not only tells if there is an index on the variable in the where clause, but allows the Optimizser
to determine both 1) what percent of the file will be returned by the where and 2) how the values are distributed
through the file. This information lets the Optimizer make intelligent decisions on how to quickly access data.

MERGE LOGIC

The approximate logic for selecting a particular join is shown below (DSET means Data Set or table). Unfortunately
this flowchart, like the one above, is a working model, rather than a definitive description of the Optimizer logic. The
author’s only consolation, is that whatever the current logic is, SAS Inc’s commitment to improving it's product means
that the current Optimizer will soon be replaced with one with more effective and subtle decision rules.

Index join
YES v — :
NO | Many unique
Does query Levels of Key var
return LE 15%
/V of the DSET YES VES
YES | ™A
Isthere an NO 1% fitsinto Hash Join
EquiJoin —| YES [P Istherea b buffer
candidate index ~ NO
NO on DSET NO ~ Sort DSETs
A Step Loop NG +
Cartesian ~i
() Are DSETs Sorted YES P Sort Merge

It is known that a where clause containing variables from two, or more, files can not be passed to the data engine.

OUTPUT FROM _METHOD

Method sends little output to the log. Below is typical output. It is important to note that an “indentation level”
indicates the existence of a result set (working table, or temp file). Output in the appendix has been annotated.
The query

proc sql _nethod;
title Ex1 - show * select;
create table exl as select * fromsashelp.class;

produces the following _Method output in the log.
NOTE: SQ. execution nethods chosen are:
Sgxcrta
sqgxsrc(SASHELP. CLASS)

Page 7 of 57

SUGI 30 Data Warehousing, Management and Quality

A table of abbreviations is required to interpret the _Method output. Note that all abbreviations shown start with SQX.
This prefix stands for “SQL Execution” code. Below, please find the abbreviations | have been able to collect while
investigating _Method and a short explanation of the abbreviations. It is likely that more exist.

Name code | Description

SgXCRTA Create table as select
SgxSLCT Select

SgxJSL Step loop join (Cartesian)
SgxJM Merge Join

SgxINDX Index Join

SgxHASH Hash Join

SgxSORT Sort

SgxSRC Source rows from table
SgxFIL Filter rows

SgxSUMG | Summary stats with group by
SgxSUMM | Summary stats with NO group by

OUTPUT FROM _TREE

The Optimizer creates a program, a multi-step program, and the output from tree can go on for pages.

Understanding the run plan requires information from both _Method and _Tree. Below is manually annotated (the red
numbers in parenthesis) _Tree output from the query above. Since _Tree output is quite complex, and explained in
the annotated logs, only a cursory explanation will be given here.

Processing
Tree as pl anned. Sequence is:
/- SYM V- (cl ass. Nane: 1 fl ag=0001) 1) rightmost level
/-0BJ----| (5) first
| (3) | -- SYM V- (cl ass. Sex: 2 fl ag=0001) 2) from bottom to
| | -- SYM V- (cl ass. Age: 3 fl ag=0001) top inside a level
| | -- SYM V- (cl ass. Hei ght: 4 flag=0001) 3) athe the top of
| \ - SYM V- (cl ass. Wi ght:5 flag=0001) |go5ch level
/-SRC ---| summarize what
| (2) \ - TABL[SASHELP] . cl ass opt="" will be passed to
- - SSEL- - - | (4) the level to the left
(1) 4) when a level is
done, then step to
the left one level

The query is processed, in levels, from right to left, and within “levels” from bottom to top. The idea of “passing data
and information/instructions to the level to the left” is a useful mental concept. At the top of each level is a summary
of the variables being passed to the level to the left. The result set being passed to the left is object (3) and it
consists of variables (5).

In the output above,
(4) SQL reads SAShelp.Class with no options processes by SQL
(keep, drop etc are processed by the data set option processor).

(5) SQL reads variables from a SAS dataset (in sashelp) called class. The variables are:
Name: which is variable 1 in the data set class
Sex: which is variable 2 in the data set class

Weight: which is variable 5 in the data set class
(3) is a summary of variables being passed to the level to the left.

(2) indicates that the branches to the right describe a data source
(1) indicates that this is a select type query (SAS developers can see other types)

Page 8 of 57

SUGI 30 Data Warehousing, Management and Quality

Below, please find the abbreviations | have been able to collect while investigating _Tree and a short explanation of
the abbreviations. Thanks to people at SAS for help with explanations.

Abbreviation This abbreviation can |Process
be found in Example
Query Number found
in the Appendix

ADIV 15 Divide

AGGR 7,811 This indicates an aggregation, but SQL does several
types of aggregation.

This is associated with an aggregation operation like
“select sex, sum(x) as totl group by sex”, or “select
name, Min(x) as smallest”

Sometimes processing the AGGR requires a separate
pass through the data set (look for re-merging note in
the log as an indicator of a separate pass) and some
times it does not.

AMUL 14 Multiply — Arithmetic Multiplication
ASC 3,6A, 6C, 8,13 Sort in ASCending order
ASGN 4,57 Assign. Create a new variable or Assign a value to a

new variable. If the SQL code is

“sel ect sun(x) as totl”

X will be summed and the result assigned to a variable
named “totl”. If the programmer names the new
variable, the name will be used in output and the
variable will be easy to identify/track through the output.
If the programmer does not name the variable, it will be
numbered and can be tracked via the number.

It is suggested that created variables be named as
shown below
Sel ect coal esce(l.name, r.nane) as
Chane , r.age as Rgt_age
CEQ 4,5,8,13 This indicates a logical instruction to be passed to the
level to the left, where it is executed. CEQ means
“check if these 2 leaves are equal” CEQ is the symbol
for both numeric and character equality testing.

DESC 13 The sort, on the level to the left, should be in
descending order. This DESC code is “information
passed to the left” on the output. The descending sort
is performed (files are created and time is spent) in the
sorting in the level to the left.

Dlist List of variables with distinct values that are participating
in an aggregation/summation/grouping. See Slist and
Tlist.

Distincting gets rid of duplicates and Dlist reports on the
distincting process. Variables on a dlist have to have
duplicates removed before you can apply the
aggregation.

Empty 3,4,5,6B,6C,7,8 |Thisis a place holder in the output. The Optimizer has
the capacity to do additional operations at this point-
operations that were not performed.

Page 9 of 57

SUGI 30

Data Warehousing, Management and Quality

FCOA

4,5,17,18,

This indicates a function, like a SAS function, of type
coalesce.

FIL

23

FlLter is used to handle the situations that can not be
handled by the data engine that is feeding into it. Fil
indicates that SQL applied an additional predicate late
in the processing. The clearest example of this is Ex
23. The where clause contains a variable that is not in
the source data set (age_mo=age*12). It first must be
created by SQL and then the filter predicate can be
applied.

Flags
(cl ass. Sex: 2
f1 ag=0001)

Flags are for developers and are also used internal to
SQL. They are beyond the scope of this paper but, as
one example, (001) means that the variable is used
higher up in the SQL processing.

JTAG

17, 17A, 19, 19A, 19B,
19C, 19D, 20A, 20B,
20c, 20D, 21A, 21B,
21C, 21D

This is a code that tells what type of join was applied.
JDS=1 indicates a left join, IDS=2 Indicates a right join
and JDS=3 indicates a full join

FROM

4,5

From indicates that data sources are being passed to
higher (more leftward) process.

GRP

8,

Group —is a multi-step process and can take some time
to perform

JOIN

4,5

This indicates the SQL did a join, but not which type

LAND

12

A Logical AND should be performed. This is usually in
a where or a select.

LITC

Not shown

This indicates the use of a Literal Constant (character
string) as in: where state="PA”

LITN

13,14,

This indicates the use of a Literal Number (ie numeric
constant) as in: Where age LT 12

OBJ

1,2,3,4,5,6A, 6B,
6C, 7, 8, 13, 14,

This indicates the existence of an object, or result set.
Obj indicates a description of columns in a result set
that is passed leftward for more processing. Objects
come from data sets or lower objects.

OBJE

4,5, 7,14, 15,

This indicates the existence of an evaluated object, the
result of an assignment of a value to a variable. An
OBJE is a variable that is typically added/merged to
another object (result set) at the same level.

When a programmer codes

Sel ect sex, nax(age) as Mage
The value of maximum age will be assigned to Mage
and mage will be, for a brief moment before the merge
into the result set for that level, an OBJE. See example
4.

ORDR

3,6A,7,8,

Order By, On the tree, contains ordering information
that is passed to the sort to the left. Order is
information and not an instruction. It is not, and does
not create, a result set. The sort, to the left of the
ORDR, creates the result set.

OTRJ

17,18, 19

This stands for any of the following joins: Left join, right
join, full join. OTRJs are paired with JTAGs and the
JTAG indicates the type of join.

SLST

7,8,15

Indicates a list of things that are involved in an
aggregation/summarization. This is a “Not distinct” List
of things that “participate” in the summarization — See
Dlist and Tlist

SORT

3,7,8,13

Sort, at this level, in the order described to the right.

Page 10 of 57

SUGI 30

Data Warehousing, Management and Quality

SRC 1,2, 4,5, 6A, 6B,, Information to the right of this is a data source.
6C,7,8, Typically an object is being passed to the left.
SSEL 1,2,3,4,5,6A, 6B, |SSEL indicates that the query is a Select query. Not all
6C,7,8 queries are of type select. There are modify queries
and drop queries and others.
SUBP 25 This indicates an input to the subquery. ltis a
parameter passed to the subquery
SYM-A 4,5,7,14, This identifies a variable as an assigned/created
variable- one that did not get read from a data set. A
SYM-A is the result of Assigning a value to a variable
through a calculation or function as in:
Sel ect nane , Age_yr=age*12 as YRS
SYM-G 7,8 A SYM-G is the result of assigning a value to a variable
through a Grouping calculation or function as in:
Sel ect nane , sex, Max(age) as Mage
Group by sex;
SYM-V 25 This identifies a variable as a having been read from a

data set.

Sym-v lib.name

1,2,3,4,5,6A, 6B,

This shows a combination of abbreviations as they

Flag=0001 6C, 7,814, might appear in the log. A variable was read from a
source table (SAS data set lib.name). See Flag above
Table 1,2,3,4,5,6A, 6B, |This shows a combination of abbreviations as they
[lib].fname 6C, 7,8 might appear in the log. Tables are identified with a two
opt=""* part name. See opt=
TLST 7,8,15 Indicates a summarization. A temp List of things that
“participate” in the summarization. See Dlist and Slist
UNIQUE 6A, , 6C, This is the message to the log when select distinct is
coded. Creating unique values is usually implemented
by passing the current result set to Proc Sort with a
nodup/nodupkey
opt=""* SQL allows data set options inside the Query. An
example might be
From cl ass(keep=nane age)
Some of these options are processed by Base SAS and
some are processed by SQL. If an option is processed
by SQL, it will show up in the opt="" note.
CONCLUSION

The SQL Optimizer is a tremendous help to programmers, allowing them to write very efficient queries with absolutely
no thought. The amount of work that the SQL Optimizer does, independently of programmer input and totally behind
the scenes, is amazing.

In some cases the performance may be improved by re-coding the query and passing the Optimizer different
instructions. These issues will be explored in future papers.

If SQL performance is causing problems, knowing what the Optimizer created for a plan of execution is essential if the
programmer want to attempt to improve performance. _method and _tree allow the programmer to see how SQL
executed the query and to see the effects of her/his programming changes.

Page 11 of 57

SUGI 30 Data Warehousing, Management and Quality

REFERENCES
TS553-SQL Joins —the Long and the Short of it, by Paul Kent — available on the SAS web site
TS320-Inside PROC SQL’s Query Optimizer, by Paul Kent — available on the SAS web site

Church (1999), Performance Enhancements to PROC SQL in Version 7 of the SAS® System
Performance Enhancements to PROC SQL in Version 7 of the SAS® System, Proceedings of the Twenty-fourth
Annual SAS Users Group International Conference”, 24 , paper 51

Kent, Paul (1995) “SQL Joins — The Long and The Short of IT Proceedings of the Twentieth Annual SAS Users
Group
International Conference, Cary, NC: SAS Institute Inc., 1995, pp.206-215.

Kent, Paul (1996) “An SQL Tutorial — Some Random Tips”,Proceedings of the Twenty-First Annual SAS Users
Group International Conference pp. 237-241.

The author wishes to thank the Paul Dorfman, Sigurd Hermansen, Kirk Lafler, and Paul Sherman for their contribution
to the SAS community on SQL and for inspiring this paper. Thanks to Paul Sherman for his review and comments.

Thanks for the help from SAS institute, especially help from Paul Kent and Lewis Church.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Russell Lavery
9 Station Ave. Apt 1,
Ardmore, PA 19003,
610-645-0735#3
Email: russ.lavery@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The Appendix Follows

Page 12 of 57

http://www.odtug.com
ACKNOWLEDGMENTS

SUGI 30 Data Warehousing, Management and Quality

A description of the data set
The CONTENTS Procedure variables in Greation rder
) # Vari abl e Type Len
Data Set Nane SASHELP. CLASS Cbservati ons 19
Menber Type DATA Vari abl es 5 1 Name Char 8
Engi ne V] I ndexes 0 2 Sex Char 1
Protection Conpr essed NO 3 Age Num 8
Data Set Type Sorted NO .
File Name C:\Program Fil es\SAS\ SAS 9. 1\ core\ sashel p\ cl ass. sas7bdat 4 Hei ght Num 8
5 Wi ght Num 8
**Sonme Basic Terns and Background to nethod and (r €€,

**Exanpl e 1;
proc sqgl _nethod _tree;
title Ex1 - show * select;
create table exl as select * fromsashelp.class;

NOTE: SQL execution nethods chosen are:
Sgxcrta (1) apply the selection criteria
sqgxsrc(SASHELP. CLASS) (2) this indicates a source for the data
To make it easier to discuss details of the output, numbers in parenthesis were added manually to the log file to make it
easier to identify the specific points under discussion. The numbers are in parenthesis and in red.

Tree as pl anned. . .
.Name: 1 flag=0001) Processing Sequenceis:
Level |/§§)JI sgfﬁ/zv (cl Sex: 2 f1ag=0001) L) rightmost level first
eve -- -(cl ass. Sex: ag=
3 | |--SYM V- (cl ass. Age: 3 flag=0001) 2) from bottom to top
V | -- SYM V- (cl ass. Hei ght: 4 flag=0001) inside a level
| \ - SYM V- (cl ass. Wi ght: 5 flag=0001) 3)when level isdone
/-SRG - -- |
| (2 \ - TABL[SASHELP] . cl ass opt =' ' then step tothelleft a
-~ SSEL-- - | (4) level

(1
Red numbers have been added, manually, to make it easier to reference parts of the output.
Query processing proceeds from bottom to top inside a level and from right to left across levels. Not every level produces
a temp file (result set). The first file actually produced above is the shown by the SRC (2). Items (3), (4) and (5) are
information to be passed to SRC, which does the work. At the top of each level (3), the result set to be passed to the left is
summarized in an obj.

Details about the above output follow:

(5) SYM-V indicates a variable from a SAS data set. Then we see the two part variable name. The :1 means that name is the
first variable in the data set (see contents above). The flag is a complex notation that is used by developers and internal
processing. Except to say that the 1 means that the variable is required in higher level processing, flag is beyond the scope
of this paper

(4) This is an indication of the data source as SAShelp.class. You can put data set options(drop, keep, rename, etc.) in
SQL. Some options are processed by base SAS and some by Proc SQL. If a dat step option were processed by Proc SQL,
it would be mentioned in the opt=""*. This does not incicate a temporary table or processing.

(3)OBJ, at the top of a level, summarizes variables being passed on to higher processing.

(2) SRC indicates a source of data, a result set that is being passed on to higher processing, or display. SRC indicates a
“result set”.

(1) SSEL indicates that this is a select query, not that variable selection happens at this point. A drop query, or modify
table query would have a different string at this point.

Appendix — SQL Method and Tree Page 13 of 57

SUGI 30

Data Warehousing, Management and Quality

**Exanpl e 2;

proc sql _nethod _tree;

title Ex2 - show basic sel ect;
create table ex2 as

sel ect Name, Hei ght Instead of select *, specify the variables
from sashel p. cl ass;

NOTE: SQL execution nethods chosen are:
Sgxcrta (1) apply the selection criteria to observati ons???
sqgxsrc(SASHELP. CLASS) (2) this indicates a source for the data

Tree as pl anned. The position number of the
variahle in the data set

/- SYM V- (cl ass. Nane: 1 fl ag=0001)

/[-0BJ----] (5)
| (3) \ - SYM V- (cl ass. Hei ght: 4 f|ag=000
/-SRC - -- — -
| (2) ! \ - TABL[SASHELP] . cl ass opt="" Use this file (no options on the
--SSEL---| (4) ' data set were processed by SQL
(1)

Reading the above output shows:

(5) SYM-V shows us selecting only two variables from a SAS data set. (Note that the Optimizer is following good
programming practice and only using variables it needs.) Then we see the two part variable name. The :1 means that
name is the first variable in the data set (see contents above). The flag is a complex notation that is used by developers
and internal processing. Except to say that the 1 means that the variable is required in higher level processing, flag is
beyond the scope of this paper.

(4) This is an indication of the data source as SAShelp.class. This shown information to be passed to the left, where work
is done. SQL accepts data set options(drop, keep, rename, etc) and can show in the opt= section. Some options are
processed by base SAS and some by Proc SQL. If a data step option were processed by Proc SQL, it would be mentioned
in the opt=""*

(3)OBJ, at the top of a level, summarizes variables being passed on to higher processing.

(2) SRC indicates a source of data, a result set that is being passed on to higher processing, or display. SRC indicates a
“result set”.

(1) SSEL indicates that this is a select query, not that variable selection happens at this point. A drop query, or modify
table query would have a different string at this point.

Appendix — SQL Method and Tree Page 14 of 57

SUGI 30 Data Warehousing, Management and Quality

**Exanpl e 3;
proc sql _nethod _tree;
*title Ex3 - show basic select;
create table ex3 as
sel ect Nane, Height
from sashel p. cl ass
order by hei ght ascendi ng;

NOTE: SQ. execution nmethods chosen are:
Sgxcrta (1) this indicates a selection of observations
sgxsort (2) this indicates a sorting of the data
sqgxsrc(SASHELP. CLASS) (3) this indicates a source for the data

R It Q: Why do we have two
Tree as planned. = leaves with name and
Result Set height?
1
Set
2 A: (3) is the source of the
/- SYM V- (cl ass. Name: 1 fl ag=0001) data. (3) is a result set.
-\ /- [-0BI--1-] (7) 6A is a summary of what
| st I (6 A \ - SYM@ (cl ass. Hei ght: 4 fl ag=0001) gets passed to the sort
- -F-).
| (2) | /- SYM V- (cl ass. Nane: 1 flag=0001)
| | /- L (10)
i | | 6 B) \ - SYM V- (cl ass. Hei ght: 4 flag=0001)
| |--SRC----|
| | (3) \ - [TABL[SASHELP] . cl ass opt=""
| | --empty- 8))
| [—h /-SYM V-(c . Hei ght : 4)
| | [-ASC----] (11)
- SSEL--- I . (C];;DR_ L 9 This branch (5, 9, 11) shows information required for
(1) the sorting. (5, 9, 11) are not an internal file- just

information that gets passed to the sort in (2)

Reading the above output shows:

Note that ORDER is not a command to execute a sort. Itis information about how the sort should be processed and is
passed to the sort (2).

Order (11, 9, 5) is not an instruction to put observations in order. Order is information to be passed up to higher SQL
processing. No processing happens in (11), (9) or (5). This section is simply telling SQL that the data will be sorted by
ascending height- at a later time. The sort happens at (2).

(4) is aplace holder. The optimizer could do amazing things here, but has not been requested to do so. :-)

(3) is a source of data. What is in that source is specified to the right.

(6A) is a summarization of the data being passed to the next higher level of processing. At this level the information about
sort order (5) becomes important.

(2) sorting is done by the SAS Proc Sort. The order information is passed to SAS sort from (5).

(1) SSEL indicates that this is a select query, not that variable selection happens at this point. A drop query, or modify
table query would have a different string at this point.

Appendix — SQL Method and Tree Page 15 of 57

SUGI 30 Data Warehousing, Management and Quality

Note: the Optimizer knows it does not need Height or Sex to
**Exanpl e 4; : i i
m ’ produce the requested results. It will not bring them into the

proc sqgl _nethod _tree; % »
*title Ex4 - show i nner join nerge; SEIERESIFAC S SR Gl N,

create table ex4 as
sel ect coal esce (l.name, r.nane) as nane
FROM (sel ect Name, Height from sashelp.class) AS L
I NNER JO N
(sel ect Name, sex from sashel p.class) as R
on |.nane =r.nane;

We specify Inner Join not using
comma. For illustration, extra
variables are included.

NOTE: SQ. executi on nmethods chosen are:
Sgxcrta (1) this indicates a selection of observations
Sgxj hsh (2) this indicates a hash join
sqgxsrc(SASHELP. CLASS) (8) this indicates a source for the data
sgxsrc(SASHELP. CLASS) (9) this indicates a source for the data

Tree as pl anned. /- SYM A (1 f] =0031) Sym-A (7) indicates a created variable. Itis
/-0BI-|--| (7) nare: ag= the result of Coalescing the variable name.
[-JON---| (3) T
| (2) | /- SYM V- (cl ass. Name: 1 fl ag=0001) |
| | /-0BJ----| (16)
| | /-SRC----| (12) No Height or sex
| | | (8) \ - TABL[SASHELP] . cl ass opt=""
| | ;- FROM - - | !
| IINC(4) | /- SYM V- (cl ass. Name: 1 | ag=0001) |
' ' | /- 0BY----| (17) .
Rule: Bottom SRC is the \-SRC----|| (13) No Height or sex
one that was put in the in (9) \ - TABL[SASHELP] . cl ass opt="" T
Hash table B
| i Q____ll-SIgA.V-(CI ass. Nare: 1) The equality test is not “done” here. (10 or 5).
i Boa [(5) \ - SYM V- (cl ass. Nane: 1) This info is passed “up” to the join (2)
| hash | --enmpty-
I join } ety /-SYM A-(name: 1 flag=0031) Sym-A (14) indictes a
| where | /-ASGN---| (14) created variable. Itis
names || | (11) | /- SYM V- (cl ass. Nane: 1) | the result of
are | | \ - FCOA- - - | (18) Coalescing the
equal. | | (15) \ - SYM V- (cl ass. Nane: 1) | variable name as the
| \-OBJE---| come in from two
-~ SSEL---| (6) sources. AssiGN the
(1 result to a new
(6) and to the right describe the coalescing process. FCOA (15) variable (of type SYM-
stands for Function. COAlesce A) called name.

(6) OBJE “documents” OBJect Evaluation logic.
It tells SQL that how to calculate/evaluate the variable.
(11) Coalesce two variables, put the result in an Assigned variable (type=SYM-A).

(10, 5) this is not an process, like getting data (9). It is used to pass data to the SQL. When the files are merged, the
values of names from the data sets (variables of type SYM-V) must be equal.

(9, 8, 4) take data from the sources to the right.

(3) This summarizes the data to be passed to the right.

What type of join?
(2) says that a join takes place. (5) says it is an equality join on name. Sgxjhsh says that the join is a hash join.

Rule: The bottom file is the file that was loaded into the hash table.

NOTE that and OBJE, as well as an OBJ, can be passed up (7) started as (14). (14) was named, “name” (yeah, not too
creative).

Appendix — SQL Method and Tree Page 16 of 57

SUGI 30 Data Warehousing, Management and Quality

**Exanpl e 5;
proc sql _nethod _tree;
*title Ex5 - show inner join nmerge using a comms,
create table ex5 as
sel ect coal esce (|.nane, r.nanme) as nane

FROM (sel ect Nanme, Height from sashelp.class) AS L

Note: the Optimizer knows it does
not need Height or Sex to process
the query. See (13) and (14)

Specify Inner Join using comma. For
illustration, specify unneeded variables

(select Nanme, sex from sashel p.class) as R
where |.nane =r.nane;

NOTE: SQL execution nethods chosen are:
sgxcrta (1) thisindicates a selection of observations
sqxj hsh (2) thisindicates a hash join
sqxsrc(SASHELP. cLASS) (9) thisindicates a source for the data

This output tells us the

sqxsro(SASHELP. CLASS) (10) thisindicates a source for the data Optllmlzer used a hash join
Tree as pl anned. M
/- SYM A- (name: 1 flag=0031) Sym-A (3) indicates an Assigned/created variable. It
/-0BJ---4] (8) is the result of Coalescing the variable name.
[-JON---| (3)
I | /-SYM V- (cl ass. Nare: 1 fIag=0001) |
I | /-0BJ----|
| /-SRC----| (13) No Height or sex vars
. (9) \ - TABL[SASHELP] . cl ass opt=""
No info h T
here [, (4 | /-SYM V- (cl ass. Nane: 1 f}aa=0001) |
about || /-08J----| Bottom file (10) goes in Hash table
type of || \-SRC----| (14)
join. | (10) \ - TABL[SASHELP] . cl ass %' ' |
| --enpty- |
| (5) /- SYM V- (cl ass. Nane: 1) R R
|--CEQ---| (11) The equality test is not “done” here. (10).
| (6) \-SYMV-(class. Name: 1) This passes information “up”.
| -- enpty-
| --enpty-
T | /- SYM A- (nane: 1 flag=0031) . i
| | /- ASGN- - - | (15) (7) and to the right describe the
| | | (12) | /- SYM V- (cl ass. Nane: 1) coalescing process. FCOA (16) stands
I | | \ - FCOA- - - | (17) for Function. COAlesce. Coalesce
| I | (16) \-SYMV-(cl ass. Nane: 1) name from two files. Assign the result
| \ - OBJE|--|)
to a variable called name.
- - SSEL---| (7)
(1

NOTE: Tabl e WORK. EX5 created, with 19 rows and 1 col ums.

(7, 12, 15, 16, 17) OBJE “documents” object Evaluation logic. It tells SQL how to calculate/evaluate the variable.

(16, 15) Coalesce two variables (both called name), put result in an Assigned variable (type=SYM-A)called name.

(11, 6) this is not an process, like getting data (9). It is used to pass data to SQL. When the files are merged in (2), the
values of names from the data sets (variables of type SYM-V) must be equal.

(10, 9, 5) take data from the sources to the right.

(3) This summarizes the data to be passed to the right.

What type of join?

(2) says that a join takes place. (6) says it is an equality join on name. Sgxjhsh says that the join is a hash join. The bottom

file is loaded into the hash table.

NOTE that and OBJE, as well as an OBJ, can be passed up (8) started as (15). (15) was named, “name” (yeah, not too
creative).

Appendix — SQL Method and Tree Page 17 of 57

SUGI 30 Data Warehousing, Management and Quality

**EXAMPLE S| X SERI ES: COVPARE/ CONTRAST AMONG EXAMPLES*;

** THIS IS AN EXAMPLE OF HOW MUCH THE OPTIMIZER DOES FOR US
Ask for distinct on an un-indexed variable, it sorts and selects in a final step -> 6A

If we have a unique index on that variable that can satisfy the select, it eliminates the sort -> 6B
* % ExaerI © BA *HEFEFI Ak kkkkkkhkhkkkkkkkkhkk k&% %

7
proc sql _nethod _tree;
*titl e EX6A- show distinct on unindexed vari abl e;
create table ex6A as select distinct nane, sex , age FROM sashel p.cl ass;

NOTE: SQ. execution nethods chosen are:
Sgxcerta (1) thisindicates a selection of observations
Sgxunig (2)this indicates pass through the data, |ike a sort w th nodup option
sqgxsrc(SASHELP. CLASS) (4) this indicates a source for the data

Tree as pl anned.

/- SYM V- (cl ass. Nane: 1 fl ag=0001) Summary of what

[-OBJ----| (7) .
| (3) | -- SYM V- (cl ass. Sex: 2 flag=0001) RS 1 [alte] 1E7 [EVEL
\ - SYM V- (cl ass. Age: 3 fl ag=0001)
/-UNIQ --
| (2) /- SYM V- (cl ass. Nane: 1 flag=0001)
. | [-0BJ----] (12) Select variables
Uniq is done by | (8) | - - SYM V- (cl ass. Sex: 2 fl ag=0001)
proc sort with | \ - SYM V- (cl ass. Age: 3 fl ag=0001)
a nodup/ --SRG---|
nodupkey | (4 \ - TABL[SASHELP] . cl ass opt=""
option! --enpty-
(5) /- SYM V- (cl ass. Nane: 1 fl ag=0001) Info passed up to
i \ |/'A(Sg;"'| (13) higher levels - to the
| 6 | /- SYM V- (cl ass. Sex: 2 flag=0001) Proe S o does
| |--ASC----| (14) c L Tiong”
| | (10) /- SYM V- (cl ass. Age: 3 fl ag=0001)
| \-ASC----| (15)
-~ SSEL---| (11)

(1

*Exanpl e 6B*The Opti nzer does not do the di /i nct-i ng*;

Create a unique index on
Name. SQL knows the
metadata on files.

data cl ass_W.i ndx(i ndex=(nane/ unique));
set sashel p.class; run;
proc sql _nethod _tree;
*title Ex6B - show distinct on unique indexed vari abl e;

create table ex6B as select distinct name FROM cl ass_W.i ndx;
quit; SQL keeps track of different
NOTE: SQ. execution nmethods chosen are: tvbes of metadata

Sgxcrta (1) this indicates a selection of observations
sgxsrc(WORK. CLASS WINDX) (2) this indicates a source for the data
Tree as pl anned.
/- SYM V- (cl ass_W.i ndx. Nanme: 1 fl ag=0001)

/-0BJ----| (5)
/-SRC----]| (3) This Query did not even access the raw data.
| (2) \ - TABL[WORK] . cl ass_W.i ndx opt="" It was able to get all the information it
--SSEL- - - | (4) needed from the index.

(1)
SQL reads the header information in the file and realizes, from the index information, that these obs. are all unique. It just
prints the observations using the index as the data source. There is no mention of an index use in the log, in _Method or in
_Tree, but the unique index was sensed by the optimizer and used to eliminate the “unique-ing process” in 6A. Note that
there is no need for sorting/ordering in the query.

Appendix — SQL Method and Tree Page 18 of 57

SUGI 30 Data Warehousing, Management and Quality

**Exanpl e 6C *1 variable index, distinct on 2 vars. **;

proc sqgl _nethod _tree;
*title EX6C -distinct on unique indexed variable when selecting nultiple variables;
create table ex6C as
sel ect distinct nanme ,sex
FROM cl ass_W.i ndx; quit;

We have a distinct index on ONE of the two variables in
the select. The metadata can not be used to help us.

NOTE: SQ. executi on nmethods chosen are:
Sgxcrta (1) this indicates a selection of observations
Sgxunigq (2) this indicates a source for the data
sgxsrc(WORK. CLASS WINDX) (4) this indicates a source for dat a

Tree as pl anned.
/- SYM V- (cl ass_W.i ndx. Nane: 1 flag=0001) SUIE7 E e
/-0BJ----]| (7) goes to higher
| (3) \ - SYM V- (cl ass_W. ndx. Sex: 2 flag=0001) level.
/-UNTQ - - |

| (2) | /- SYM V- (cl ass_W.i ndx. Nane: 1 flag=001)

I | [-0BJ----| (12)
Uniq is done by I e | (8) \ - SYM V- (cl ass_W.i ndx. Sex: 2 flag=0001)
pr?jc s/ort(;Nlt: a | (4 \ - TABL[WORK] . cl ass_W.i ndx opt="" Info passed up
no _up nodupkey | --enpty- (9) to higher levels
option! | (5) /- SYM V- (cl ass_W.i ndx. Nane: 1 fl ag=0001), —to the Proc

; | /-ASC---| (13) Sort that “does”

| \-ORDR---| (10) . the UNIQ

| (6) | /- SYM V- (cl ass_W.i ndx. Sex: 2 fl ag=0001) ’

| \-ASC - - -| (14)

- - SSEL- - - | (11)

(1)
The metadata information (index information) does not contain enough information to allow the Optimizer to help.
dataset with a new index that is “on” both the variables and then use it in Proc SQL.

Exanpl e 6D *Conpound i ndex and di stinct *****xx*xx:
data cl ass_W Cnpi ndx(i ndex=(nm sex=(nane sexg/ unique));

set sashel p. cl ass; K

run;

Create a uniqtmrmd index on Name and sex —In real
life we’d worry about names like Pat that can be male or

female (Patrick and Patricia), but not in this small data set.
proc sql _nethod _tree;

*title Ex6D - show distTnct on two vars with a uni gue conpound I ndex,
create table ex6d as sel ect distinct nane, sex FROM cl ass_W Cnpi ndx;

NOTE: SQ. execution nethods chosen are:
Sgxcrta (1) this indicates a selection of observations

sqgxsrc(K. CLASS WCMWPINDX) (2) this indicates a source for the data
Result
Tree as pl anned. Setl
T——— 7-s™ V- (cl ass_W Cnpi ndx. Nane: 1 fl ag=0001)
/-0BJ----| (5)
| (3) \ - SYM V- (cl ass_W Cnpi ndx. Sex: 2 fl ag=0001)
/-SRC---|
| (2) \ - TABL[WORK] . cl ass_W Cnpi ndx opt=""
--SSEL---| (4)

@
SQL reads the header information in the file and realizes that these obs. are all unique. It just prints the

observations using the index itself as the source of the data. No mention of index use in the log, in _Method
or in _Tree, but the unique index was sensed by the optimizer and used as the data source.

Appendix — SQL Method and Tree Page 19 of 57

SUGI 30

Data Warehousing, Management and Quality

Exanpl e 7 Grouping and cal cul ationg***x**x.

proc sql _method _tree; *title Ex7 - G ouping and cal cul ations;
create table ex7 as sel ect sex , max(age) AS maxage, AVQE HElI GHT) AS AVG HT
FROM cl ass_W.indx GROUP BY SEX ;

NOTE: SQL execution met hods chosen are:

Sgxcrta (1) this indicates a selection of observations
Sgxsung (3) this indicates an aggregation - maps to AGGR in tree
Sgxsort (5) this indicates a sorting of observations

Sex is just a Variable from

sgxsrc(WORK.CLASS W_INDX) (4) thisindicates a source for the data
a data set. We have

Tree as pl anned. /- SYM V- (cl ass_W.i ndx. Sex: 2 flag=0001) Assigned values to
[-0BJ-F--| (13) Maxage and Avg_ht.
| (4) | 'gY%M A-(maxage: 1 fl ag=0039) through grouping.
| \ A- (AVG_HT: 2 fl ag=0039)
/- ACCR- - - |
| (3) | /- SYM V- (cl ass_W.i ndx. Age: 3 fl ag=0001)
I I /-0BJ---- (21)
| | | (14) I[-- SYMW(cl ass_W.i ndx. Hei ght: 4 fl ag=0001)
| | | \ - SYM V-l ass_W.i ndx. Sex: 2 fl ag=0001)
| -- SORT- - - | =
Line | (5) | /- V- (cl ass_W. ndx. Age: 3 flag=0001)
Wrapping | | /-0BJ----| 29)
| | (22) |--SYMV-(class_W.indx. Hei ght: 4 flag=0001)
(30)
(2) | | | | \ - SYM V- (cl ass_W.i ndx. Sex: 2 flag=0001)
l | |--ESRC"--l\ TABL[WORK I(31)W' d t=""
- .class i ndx opt=
AGGR = Aggregate I I R (en-zjt y- (2[3) - P
| | /- SYM V- (cl ass_W,4 ndx. Sex: 2)
If there are no | | /-ASC- - --|
TG GEVEES, l . _ \- OROR | (24) GRP (7) is Not a process!
and no re-merge, l egpt y / (516) | i ndx. Sex: 2 Passing info to higher level
SQL can do this in I(Gjol - SYM V- (class_W.i ndx. Sex: 2) '
one pass with a | (7)
pipeline. Tlist and | --enpty- (0,0) The left O indicates
Slist contain info | --enpty- position on on Slist the right
to be used by the I (8) - ASON-- | /- SE(M 3"\ (maxage: 1 flag=0039) 0 indicates non-unique.
AGGR -A -- 25
| | (17) \ - SYM G (#TEMX001: 1 stat=5,0 from Age(O0, 0))
| -- OBYE- --| (26) on: Stat=s -
| | (9) | /- SYM A (AVG HT: 2 f1 ag=0039)| stat function: Stat=5 -> max
| | \ - ASG\- - - | (27)
| | (18) \ - SYM G (#TEMX002: 2 stat=3,0 from Hei ght (0, 0))
| --enpty- (28) ,
| (10) /- SYM G (#TEN[-DOl: 1 stat :5Y 0 | Stat=2 -> mean fiinction Should be
= i ST---1 (19) (1,0)
TIst=TempLiST) \-SYM G (#TEME@02: 2 stat=3,0 from Hei ght (1, 0))

/- SYM S- (Age: 3 ss=0008x)
(20)
\ - SYM S- (Hei ght: 4 ss=00EOx)

Slist=Non-unique list

Slist Numbering starts at O
height is position 1

RN = = |

(1)

Can also have Dlst= unique list

The Max(age) and Avg(height) values are not stored in temp files. They are stored in “Pipelines”.
(25, 26, 27, 28)

In (26) SymG indicates that a grouping is involved. Stat=5 is a code indicating that an average is calculated for the groups. The left
0 in the (0,0) after age indicates the source of the data (position 0 in the slist). The right 0 indicates non-unique. There are three
result sets here. (15) (5) and (3) are physical files.

Appendix — SQL Method and Tree Page 20 of 57

SUGI 30 Data Warehousing, Management and Quality

*****Exarrple 8 Havi ng **************;
proc sqgl _nethod _tree;

*title Ex8 - Grouping and cal cul ati ons; /*create tabl e ex7 as*/
sel ect NAME, sex , height, age FROM class_W.i ndx
CGROUP BY SEX HAVI NG AGE=VAX(AGE) ;

NOTE: The query requires renerging suwﬁry statistics back with the original data.

NOTE: SQL execution methods chosen are: Remergingis associated with the
Sgxslct (1) this indicates a selection of observations | AGGR and takes another pass
Sgxsung (4) Summary Statistics Wth G oupi ng
Sgxsort (6) this indicates a sorting of observations
sgxsrc(WORK. CLASS W INDX) (20)indicates a selection of observations

Tree as pl anned /- SYM V- (cl ass_W.i ndx. Nane: 1 flag=0001)

This takes a pass
through the data

to apply the
criteria /- SYM V- (cl ass_W.i ndx. Age: 3 flag=0001)
. . | /-0BJ----|
| | (20) | --SYM V- (class_W. ndx. Sex: 2 fl ag=0001)
| | | --SYM V- (cl ass_V\Li ndx. Nare: 1 f1 ag=0001)
(3) | | \ - SYM V- (cl ass_W. ndx. Hei ght: 4 fl ag=0001)
(23)
(2) | -~ SRC--- - | _
| (14) \ - TABL[WORK] . cl ass_W.i ndx opt=""
I --enpty- (21)
| /- SYM V- (cl ass_W.i ndx. Sex: 2)
Line | /-ASC - - -|
Wrapping \ - ORDR- - - | (22) Passing info. to (6)
(15)
T | /- SYM V- (cl ass_W.i ndx. Age: 3)
--CEQ---| (16)
(7) \-SYM G (#TEM3001: 1 stat=5,0 from Age(0, 0))
| /- SYM V- (cl ass_W.i ndx. Sex: 2)| SIS = (b |
--GRP----|
(8)
--enpty- (0,0) The left O indicates position on on Slist the right O indicates
[-- g%: §' non-unique.
- - en‘pt y-
(9) /- SYM G (#TEM3001: 1 stat=5,0 from Age(0, 0))
| [--TLST---| (17) .-
| (10) /-SYMS (Age:2 s$s=0008x) | Stat=s > max |
\-SLST---| (18)
- - SSEL- - - (11)]) . L
(1) Slist Numbering starts at 0 Age is position O

We start with table (21) and create a result set (RS) (14). The contents of (14) are sorted (6) and then summarized in (20). The max
age is stored in a pipeline named #TEMGO001 (17). The CEQ (7) operator, and information to the right on its branch, is information
passed to the higher level. Grp (8) is information passed to a higher level.

Appendix — SQL Method and Tree Page 21 of 57

SUGI 30 Data Warehousing, Management and Quality

**Example 9 exploring index use in a join *xxkkkex:

Create data for join. Note that in the data set Left, we have an indexed variable
called LindxName. Note that in the data set Right, we have an indexed variable
called RindxName.

When we merge the two datasets, left will always be to the left of the join
indicator and right will always be to the right.

E.G. (From left as L, right as R)

*left and right both have an un-idexed variable called name and a variable with a two part name
“L” or “R” and the suffix “l ndNane”;

This nam ng convention will nmake it easier to understand if a variable has an index or not.

data left_class(drop= RIndxNane i ndex=(LI ndxNane))
Ri ght _cl ass(drop= LI ndxNanme i ndex=(Rl ndxNang));

I ength name $ 13;
set sashel p. cl ass;

do i=1 to 1200; /*expand file so we do not hash*/
name=nane| | put (i, 5.0);
Rl ndxNane=nane;
LI ndxNanme=nane;

Qut put ;

end;

run;

The data step above just expands the class data set (it uses a loop to increase the file size in an effort to have files so
large that 1% of the file is larger than the buffersize) to reduce the chance of using a hash in the merging. The
concatenation is done so that there are unique values of name so that we can make a unique index.

Appendix — SQL Method and Tree Page 22 of 57

SUGI 30

Data Warehousing, Management and Quality

Proc SQ. _nethod _tree;
title "EX9A inner join wi thout an index on the variable";
create table hope as
sel ect coal esce(l.nanme, r.nane), |.sex, r.age
Fromleft_class as | inner join right_class as r
on | .name=r.nanme; /*these are not indexed*/
NOTE: SQ. execution nethods chosen are:
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a Merge join
Sgxsort (10) SORT
sqgxsrc(WORK. LEFT_CLASS(al i as=L)) (14) observati ons
sgxsort (11) SORT
sqgxsrc(WORK. RI GHT_CLASS(al i as=R)) (19) observati ons

Inner Join.
Left as L right as R

/|

Note variables passed on to (2).
Note |. & r. prefix for variables.
Very nice touch. See (22)

/- SYM A- (#TEMAOO1: 1 f| ag=0035)
(9)

Tree as pl anned.
11
| --SYM V- (I.Sex:2 flag=0001)

\-SYM V- (r. Age: 3 flag=0001)

I
I
[-JON--| N
| (2) | /- SYM V- (I . name: INff | ag=0001)
| | /-OBI----| (24) Vars sent
| | | (14) \- SYM V- (I . Sex: 2 flag=0001) to (10)
[| /- SORT- - - |
| | | (10) | /-SYM V- (I .nanme:1 fl ag=0001)
I | I | /-0BJ---- (33)
| | | (25) \-SYMV-(Il.Sex:2 flag=0001)
Optimizer does | | --SRC----|
not find an INDEX I (15) \-TAI(BEEB;NRK] .left_class opt="p
--enpty- Passing
TO USE. DATA IS | (16) [-SYMV-(1.name: 1) | info to
SORTED and SQL | | /-ASC- - - - | (34) (10)
uses a join merge | | \ - ORDR- - - | (27)
: - | (17)
| | (4) | /-SYM V- (r.name: 1 fl ag=0001)| wvars sent
I I I /-0BJ---- (28) to (11)
| | | | (18) \ - SYM V- (r. Age: 3 fl ag=0001)
| | \ - SORT- - - |
| | (11) | /-SYM V- (r.name: 1 fl ag=0001)
I I I /-0BJ----| (35)
| | | | (29) \-SYMV-(r.Age: 3 flag=0001)
| | | -- SRC-- - - |
| | | (19) \ - TABL[WORK] . ri ght _cl ass opt=""
No | | I I?%;y (50 /- SYM V- (1)
- - (r.nane:
JTAG — | | /-ASC----] (36)
info [| \ - ORDR- - - | (31) Passing info to (11)
| | --empty- (21)
I I CESQ) | /- (Szg/; V- (1. nane: 1) Passing info to join (2). Note I. & r. prefix for
| | (6) \- SYM V- (1. nane: 1) variables to show data source. Very nice touch.
I i
- - eer y_
| | (7 /- SYM A- (#TEMAOO1: 1 flag=0031) | Coalesce two name
| | /- ASGN- - - | (22) variables and Assign
| | | (13) /- SYM V- (1. nane: 1) them to #TEMAQO1..
| | | \ - FCOA- - - | (32) See (9)
| | | (23) \ - SYM V- (r. nane: 1)
| \-OBJE---|
- - SSEL---| (8)

(1)

NOTE that and OBJE, as well as an OBJ, can be passed to left.

Appendix — SQL Method and Tree

Page 23 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQ _nethod _tree;
title "EX9B inner join with an index on the variable from LEFT table";
create table hope as

sel ect coal esce(l.nanme, r.nane), |.sex, r.age

Fromleft_class as | inner join right_class as r

on |.LlIndxNanme=r.nane; /* LlIndxNanme |S indexed*/

NOTE: SQL execution nethods chosen are:

Sgxcrta (1) this indicates a selection of observations HASH JOIN indicated “incorrectly?”
Sgxj hsh (2) this indicates a HASH join
sqgxsrc(WORK. LEFT_CLASS(al i as=L)) (9)indicates a selecti of observations

sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (10) i ndi cates a sel ecti on of observations

Tree as pl anned.

/ - SYM A- (#TEMAOO1: 1 f | ag=0035)

/-0BI--1-| (8) Note variables passed on (L. & R.
| (3) [--SYMV-(I.Sex:2 flag=0001) prefixes). Note #TEMA See (17)
| \-SYM V- (r. Age: 3 fl ag=0001)
[-JON---|
| (2) | /- SYM V- (I . LI ndx : 7 f1ag=0001)
! ! /-0BI----|
| (13) | --SYM V- (Il .name: 1 flag=0001)
\ - SYM V- (I.Sex: 2 flag=0001)
/-SRG ---
| | | (9) \-TABL[WORK] . | eft _cl ass opt=""
--FROM - - | (14)
(4) | /-SYM V- (r.nanme: 1 fl ag=0001)
HASH | /-0BJ----
| Jjoin | | | (15) \ - SYM V- (r. Age: 3 fl ag=0001)
b \-SRC----|
above (10) \-TABL[WORK] . ri ght cl ass opt=""
and - - en‘pt y- (16) . o s
[index || (5) /- SYM V- (| . LI ndxNane: 7) Passing info to (2). Note L. & R. prefix for
| below ||--CEQ---| (11) variables to show data source. Nice touch.
| | (6) \ - SYM V- (r. nane: 1)
| --enpty-
| --enpty-
| (7) /- SYM A- (#TEMAOO1: 1 fl ag=0031)
| /-ASGN---| (17) Coalesce two name
| | (12) | /- SYM V- (| . nane: 1) variables and Assign
| | \ - FCOA- - - | (19) them to #TEMAOO1.
I | (18) \-SYMV-(r.nane: 1) See the OBJE at (8)
| \ - OBJE- - -|
- - SSEL- - - | (8) : ' i
(1) (8) is an object created by an evaluation process

I NFO | ndex LIndxName sel ected for WHERE cl ause optimni zati on.

What happened is that, after tentatively trimming rows and columns from both files, the Optimizer estimated that 1%, of the smaller
of the files being joined, would fit in a buffer.

This is a strong hint/instruction for the Optimizer to use a hash join and so SQL loaded the smaller table into a hash table. The
Optimizer, as the hash table was being created, counted the number of unique key-variable values being loaded into the hash table.
If the number of unique values loaded into the hash table is small (maybe below 1024), the Optimizer will dynamically change the
plan to take account of this information.

If there fairly few unique values key in the hash table, the Optimizer will take the values from the hash table and use them to build an

“in” phrase for a where clause (e.g. where state in(“PA”, “TX”)). The Optimizer dynamically adjusted the plan to use an index lookup
to effect the merge.

Appendix — SQL Method and Tree Page 24 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQ. _nethod _tree;
title "EX9C inner join with an index on the variable from Rl GHT table";
create table hope as

sel ect coal esce(l.nanme, r.nane), |.sex, r.age
Fromleft_class as L inner join right_class as r
on L.nane=r.RIndxNane; /* RIndxNane |S indexed*/ Inner Join.
NOTE: SQ. execution nmethods chosen are: .
Sgxcrta (1) this indicates a selection of observations Left as L right as R

Sgxjm (2) this indicates a MERGE join

Sgxsort (11) SORT
sqgxsrc(WORK. LEFT_CLASS(al i as=L))))(15)i ndicates a selection of observations

sgxsort (12) SORT
sqgxsrc(WORK. RI GHT_CLASS(al i as=R)))) (19)i ndi cates a sel
Tree as pl anned. /- SYM A- (#TEMAOOL: 1 fl ag=0035)
/-0BJ----] (10)

(4) | --SYM V-(I.Sex:2 flag=0001)
\ - SYM V- (r. Age: 3 fl ag=0001)

on of observations

Note variables passed on to (4).
Note |. & r. prefix for variables.
Very nice touch. See (22)

I
|
[-JON---|
| (3) | No RindxName in (4) /- SYM V- (I . nameN_|flag=0001)| wvars sent
| | —~—coo----| (25) to (11)
| | | (15) \-SYM V- (I . Sex: 2 flag=0001)
| | /- SORT- - - |
| | | (11) | /-SYM V-(I.nanme: 1 flag=0001)
I I I I /-0BJ----| (34)
| [[| | (26) \-SYM V- (1. Sex: 2 flag=0001)
| | --SRC-- - -
| | (16) \-TABL[WORK] . | eft _cl ass opt=""
I I | --enpty- (27)
| Even | | (17) /- SYM V- (I . name: 1)
though | | /-ASC----| (35)
an | \-ORDR---| (28) (11) sorts by name
index - - FROM - - | (18)
| isted (5) | /- SYM V- (r. R ndxNane: 7 fl ag=0001)
[e'X'S edq, | /-0BJ----] (29) Vars sent
[twas | | (19) | --SYM V- (r.nanme: 1 flag=0001) ta (12)
| not [[\- SYM V- (r. Age: 3 f1ag=0001)
| used \ - SORT- - - |
| here. (12) | /- SYM V- (r. RIndxName: 7_f1ag=0001)
I | Metnod I | /o) I | (36) No RindxName in (4)
o - -
| SM"""S a | | (30) |--SYMV-(r.nane:1 flag=0001)
| J_;?e | | \- SYM V- (r. Age: 3 flag=0001)
| : | --SRC---- |
| (20) \ - TABL[WORK] . ri ght _cl ass opt=""
| --enpty- (31)
| (21) /- SYM V- (r. Rl ndxNane: 7)
[| /-ASC - -- | (37)
\-ORDR---| (32) (12) sorts by RIndxName
--enpty- (22)
(5) /- SYM V- (I . nane: 1) Passing info to (3)
| --CEQ---] (13) Names are passed up
(7) \ - SYM V- (r. Rl ndxNane: 7) to the coalesce and
-- errp: y- dropped ASAP. We
-- errp y-
| | (8 / - SYM A- (#TEMAOOL: 1 f| ag=0031) Coa'esge :he names
| | /_ASG\I___I (23) and store In
| | | (14) | /- SYM V- (1 . nane: 1) SYM-A-(#TEMAOOL
| | | \-FCOA---| (33)
| | | (24) \ - SYM V- (r. nane: 1)
| \ - OBJE- - - |
--SSEL---| (9) _ ' _
(1) (9) is an object created by an evaluation

Please note that the optimizer gets rid of
RindxName as soon as it can. At (4) there is
no need for RindxName to be passed “up”.

Appendix — SQL Method and Tree Page 25 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQ. _nethod _tree;
title "EX9D inner join with an index on the variables from BOTH tabl es”;
create table hope as
sel ect coal esce(l.name, r.nane), |.sex, r.age
Fromleft_class as | inner join right_class as r
on | . LI ndxName=r. Rl ndxNanme; /* Both variables are indexed*/

NOTE: SQ. execution nmethods chosen are: HASH JOIN indicated “incorrectly”

Sgxcrta (1) this indicates a selection of observations
Sgxj hsh (2) this indicates a HASH join

sqgxsrc(WORK. RI GHT_CLASS(alias = R)) (10)indicates a selection of observations

sqgxsrc(WORK. LEFT_CLASS(alias = L))(11)indicates a selection of observations

Tree as pl anned. /- SYM A- (#TEMAOOL: 1 fl ag=0035)
/[-0BJ----] (9) -
| (3) | --SYM V-(I.Sex:2 flag=0001) Name is
| \ - SYM V- (r. Age: 3 fl ag=0001) Passed up,
[-JAN--| & dropped
| (2) | /- SYM V- (r. Rl ndxNane: 7 flag=000 e
| | /-0BJ----| (20) |
| | | (14) |--SYMV-(r.nane:1 flag=0001) coalesce
| | | \-SYM V- (r. Age: 3 flag=0001)
| ! /- SRC-- - - |
| | | (10) \ - TABL[WORK] . ri ght _cl ass opt=""
| | - - FROM - - | (15) |
| | (4) | /- SYM V- (1. LI ndxNane: 7 fl ag=000/ Name is
| | [-0BJ----] (21) P d
[| HasH | | (16) |--SYMV-(I.nanme:1 flag=0001) P
[| JOIN | | \-SYM V- (1. Sex: 2 flag=0001) PP
| above \-SRC----| after
| and (11) \- TABL[WORK] . | eft _cl ass opt="" coalesce
[| index [-enmpty- (17)
| i (5) /- SYM V- (r. Rl ndxNane: 7) . .
| [eri L CEQ---| (12) The indexed variables are
|| Pelow (6) \-SYMV-(I.LlndxNane: 7) passed up to the CEQ and
| L - enpt y- dropped ASAP
| --enpty-
[(7) / - SYM A- (#TEMAOO1: 1 f1 ag=0031)
| T [-ASGN---| (18)
| | | (13) | /- SYM V- (I . nane: 1)
| | | \-FCOA---| (22)
| | | (19) \ - SYM V- (r. nane: 1)
| \ - OBJE- - - |
--SSEL---| (8)
(1)

| NFO I ndex RIndxName sel ected for WHERE cl ause optim zation.

What happened is that, after tentatively trimming rows and columns from both files, the Optimizer estimated that 1%, of the smaller
of the files being joined, would fit in a buffer.

This is a strong hint/instruction for the Optimizer to use a hash join and so SQL loaded the smaller table into a hash table. The
Optimizer, as the hash table was being created, counted the number of unique key-variable values being loaded into the hash table.
If the number of unique values loaded into the hash table is small (maybe below 1024), the Optimizer will dynamically change the
plan to take account of this information.

If there fairly few unique values key in the hash table, the Optimizer will take the values from the hash table and use them to build an

in” phrase for a where clause (e.g. where state in(“PA”, “TX”)). The Optimizer dynamically adjusted the plan to use an index lookup
to effect the merge.

Appendix — SQL Method and Tree Page 26 of 57

SUGI 30

Data Warehousing, Management and Quality

exanpl e 10 **when does sel ect happen???*x**x**xx**.

proc SQL _nethod _tree;
sel ect name , sex, age
from sashel p. cl ass
order by sex, age;
NOTE: SQL execution nethods chosen are:
sqxslct (1) this indicates a selection of observations

/*EX10A the timng of the selects:

variables is early */

sqxsort (2) this indicates a Sort

sqxsrc(SASHELP.CLASS)) (3) indicates a selection of obseryhtions

Tree as pl anned. /-SYMV-(class. Nane: 1 flag=0001)

/-0BJ----| (7)
| (3) | --SYM V- (cl ass. Sex: 2 flag=0001) L .
| \- SYM V- (cl ass. Age: 3 flag=0001) T Ol [s e
/- SORT--- | programming practices. Variables are
| (2) | /-SYM V- (cl ass. Name: 1 | ag=0001) Selected Early. Un-needed variables
| | [-0BJ----| (12) (height, weight) are not brought into
| | (8) | --SYM V- (cl ass. Sex: 2 flag=0001) the SQL space.
| | \-SYM V- (class. Age: 3 flag=0001)
| |--SRC---| \I
| | (4) \ - TABL[SASHELP] . cl ass opt=""
| |-- enpty- (9)
| | (5) /- SYM V- (cl ass. Sex: 2) (6, 10,11,13 &14) show
| | [-ASC---1 (19) information that is passed onto
| \-ORDR---| (10) L
| (6) | /- SYM V- (cl ass. Age: 3) the sort (2). Sorting is done by
| \-ASC----| (14) Proc Sort.
-~ SSEL---| (11)
(1)
NOTE: PROCEDURE SQL used (Total process time): real tine 1.66 seconds cp ine 0.45 seconds

Note how the Optimzer only brings in variables it needs for the query.
*DYNAM CALLY Trinm ng Extra (not

needed) variables As they becone redundant ;

proc sql _method _tree;title "EX10B tining of selects:of observations";

sel ect nane from sashel p.cl ass

where sex="M order by age;

NOTE: The query as specified involves ordering by an itemthat doesn't appear in its SELECT cl ause.

NOTE: SQ. execution nethods chosen are:

AN

sqgxsl ct
sgxsort
sqgxsrc(SASHELP. CLASS)

Note is from SQL

A

Tree as pl anned.

/- SYM V- (cl ass. Nane: 1 fl ag=0001)

< Age Not Needed in output and

Age Needed for
ordering

|
OBS. & Vars. are Selected Early. Base

SAS Compares the value in sex to the
literal character value “M”

is not stored here
01)

[-0BY----| (7)

/- SORT-} - | (3)

I 2 | | /- SYM V- (cl ass. Nane: 1 flagzooN

! ! /-0BI----| (12)

| | | (6) \-SYM V- (cl ass. Age: 3 fl ag=

I [--SRC-1--|

| | (4) | -- TABL[SASHELP] . cl ass opt=""

| | | (9) /---(Sex:2)

I | \-CEQ ---| (13)

| | (10) \-LITC(' M)

I | --enpty=

| | (5) /- SYM V- (cl ass. Age: 3)

| | /-ASC - --| (14

I -ORDR--|| (11) :
-~ SSEL---| (6) Age Not Needed after ordering

(1)

NOTE: PROCEDURE SQL used (Total process tinme): real

time 1.43 sec.

cpu time 0.01 sec.

Note how the optimizer trims variables that it no longer needs. It needs to select for sex="M”,

and then drops sex. It orders by age, and then drops it as well.

Appendix — SQL Method and Tree Page 27 of 57

SUGI 30 Data Warehousing, Management and Quality

*****exan-ple 11***The |_bV| ng Oause *******************************;

proc sgql _Method _tree;

title "EX11 this illustrates a having clause"; Remerging is associated with the AGGR and
sel ect name, sex, age from sashelp.class takes another pass through the data
group by sex havi ng age=nax(age);

NOTE: The query requires renerging summary statistics back with the original data.

NOTE: SQL execution net hods chosen are:
Sgxslct (1) this indicates a selection of observations
Sgxsung (2) Aggreagate is associated with a having- requires a pass through the data
sgxsort (4) this indicates a Sort
sqgxsrc(SASHELP. CLASS) (12) this indicates a selection of observajions

Tree as pl anned. /- SYM V- (cl ass. Nane: 1 fl ag=0001)
[-0BJ----| (10) SYM-G-(#TEMGO001:1
(3) | --SYM V- (cl ass. Sex: 2 fl ag=0001) ¢ :

\ - SYM V- (cl ass. Age: 3 fl ag=0001) Max(Age) not in Obj

|
|
(2) | /- SYM V- (cl ass. Age: 3 fl ag=0001)
|
|
|

/ - AGGR- - - passed to left.
I
| /[-OBJ----| (19)
| (11) |--SYMV-(class. Sex: 2 flag=0001)
I

\-SYM V- (cl ass. Nanme: 1 fl| ag=0001)

/- SYM V- (cl ass. Age: 3 fl ag=0001)

I

I

I

I

sorted | [-0BJ----]| (23)
and max | | (20) | --SYM V- (cl ass. Sex: 2 flag=0001)
I ages by | I --SRC————I \ - SYM V- (cl ass. Nane: 1 fl ag=0001)
| Isnex are | (12) \-TABL[SASHELP].cl ass opt=""
| I | --enpty- (21
|| Pipeline. | (13) /- SYM V- (cl ass. Sex: 2)
|| Take a | /- ASC----|
|| pass to V-ORDR--4| - (22) (14) is information for the sort (4)
I[find the , S%R/ | ~ ~J
I correct . I CSCEQ---|) (15) - (class. Age: 3) The (5) equality
j| oPsevat | (5 \ - SYM G (#TEM3DO1: 1 stat=5,0 from Age(0,0)) | comparison will be done
[ons. | /- SYM V- (cl ass. Sex: 2) between age in the table
| | - - GRP----| (1 and the values of max
I l . g?rz)t y- Age in to be compared (5) within Sex Zzi ig;he PHCIHNE = (9
} --enpty-
- - en‘pt y-
I | --enmpty-
| | (7) /- SYM G (#TEM3001: 1 stat=5,0 from Age(0, 0))
| | --TLST---| (17)
| | (8) /- SYM S- (Age: 2 ss=0008x) - .
st I \- (Slé)ST— -l (18) SQL avoids temp files if it can.

(1) \I

The data was re-merged and a second pass was required to get the results.

Appendix — SQL Method and Tree Page 28 of 57

SUGI 30 Data Warehousing, Management and Quality

x*xrexanple 12 **illustrates the and clause ***x*x*kxkxkxs*.
proc sgl _Method _tree;
title "EX12 this illustrates a AND cl ause" ; Remerging is associated with the AGGR and
sel ect name, sex, age from sashel p.class takes another pass through the data

group by sex
havi ng age:nﬂx(age) and sex="F"; /
NOTE: The query requires renergi ng sunmary atistics back with original data.

NOTE: SQ. execution nethods chosen are:
Sgxslct (1) this indicates a selection of observations
Sgxsung (2) Aggreagate is associated with a having- requires a pass through the data
Sgxsort (4) this indicates a SORT
sqgxsrc(SASHELP. CLASS) (12) this indicates a selection of observations

Tree as pl anned. /- SYM V- (cl ass. Nane: 1 fl ag=0001) Summarizing what gets passed up.
[-0BJ----| (10) No max(age)
| (3) | --SYM V- (cl ass. Sex: 2 fl ag=0001)
| \ - SYM V- (cl ass. Age: 3 fl ag=0001)
/- AGGR- - - |
| (2) | /- SYM V- (cl ass. Age: 3 fl ag=0001) Summarizing what
l l /-CB)----| (20) ets sorted
| | | (11) |--SYMV-(class. Sex: 2 flag=0001) 9
| | \-SYM V- (cl ass. Nane: 1 fl| ag=0001)
| | - - SORT- - -
| | (4) The /-SYM V- (cl ass. Age: 3 fl ag=0001)
| | Data [-0BJ----| (26)
Resulitiofiqleny @@2) |[! (21 |--SYMV-(class.Sex:2 flag=0001)
wi thout the | \ - SYM V- (cl ass. Nane: 1 fl ag=0001)
and sex=’F’ --SRG---|
in the where cl ause | (12) \ - TABL[SASHELP] . cl ass opt=""
Nane Sex Age --enpty- (22)
(13) /- SYM V- (cl ass. Sex: 2)
/-ASGC - - - | (27)
Mary F 15 \ - ORDR- - - | (23) 2 equallities w/ a Logical And (5)
Janet F 15 (T4) 7-SYMV-(class. Age: 3)
Philip M 16 /-CEQ ---| (24)
| (15) \ - SYM G (#TEMX001: 1 stat=5,0 from Age(0, 0))
--LAND} - - |
T (5) | /- SYM V- (cl ass. Sex: 2) S
| | \-CEQ---| (25) AEﬁlDZCItZLzelllustratesthe
I I (16) \-LITC(' F') R
| | =SYMV—(Tass Sex2) Name Sex Age E
| |--GRP----| (17) s
| | (6) Mary F 15 U
| | --enpty- Info to Aggr (2)-Group by sex (6) Janet F 15 L
I | --enpty- T
I | --enpty-
| | --enpty-
| | (7) /- SYM G (#TEM3001: 1 stat=5,0 fr Age(0,0))
| |--TLST---] (18)
| [(8) /- SYM S- (Age: 2 ss=0008x) Max(Age) is stored in a var called
csEL I \- SE-S)T- --1 0 (19) SYM-G-(#TEMG001:1
(1) T

Having is applied in the AGGR (2) and requires a pass through the sorted data and r ener gi ng.
The key to the having is the LAND (logical And) is at (5). We do not de-dupe in this query. Everyone having an age= max(age) gets
passed on.

Appendix — SQL Method and Tree Page 29 of 57

SUGI 30 Data Warehousing, Management and Quality

exanple 13 **illustrates variable=literal & sorting;
proc sgql _Method _tree;
title "EX13 this illustrates a = literal and sorting";
sel ect name, sex, age from sashelp.class
where age = 12 order by nanme desc , hei ght asc ;

NOTE query as specified involves ordering by an itemthat doesn't appear in its SELECT
cl ause.

NOTE: SQL execution nethods chosen are: We sort by a var. (height) not
Sgxslct (1) this indicates a selection of observations in the final output

Sgxsort (2) this indicates a SORT

sgxsrc(SASHELP. CLASS) (4) this indicates a selection of observation

Tree as pl anned. /- SYM V- (cl ass. Nanme: 1 fl ag=0001)
/-0BJ----]| (7) Height is not passed on to
| (3) | --SYM V- (cl ass. Sex: 2 fl ag=0001) the higher level (1)
| \ - SYM V- (cl ass. Age: 3 flag=0001)
/ - SORT- - - |
| (2) | /- SYM V- (cl ass. Name: 1 fl ag=0001)
/-0BJ---- (13) o
l I | (8) || --SYM V- (cl ass. Sex: 2 f1ag=0001) AL s sl oy e
We sort | | -- SYM V- (cl ass. Age: 3 flag=0001) sort and is passed to
| \ - SYM V- (cl ass. Hei ght: 4 fl ag=0001 the sort through (4).
by a var. |--SRC----|
(height) | (%) | - - TABL[SASHELP] . cl ass opt ="'
@R (I | [(9 - NAME- - (Age: 3)
the final | \-CEQ ---| (14) Where age =12 is a nutheric literal (LITN)
output | (10) \-LITN(12) comparison. SQL also supports character
| --enpty- (15) literals LITC.
I (5)
| /- SYM V- (cl ass. Nane: 1
| /- DESG- - - | (16)
[\ - ORDR- - - | (11)
| (6) | /- SYM V- (cl ass. Hei ght : 4)
| \-ASC----| (17)
--SSEL---| (12)
(1)

The checking of single observations against the criteria age=12 is done early — by the data engine. The optimizer wants to make
tables as small as possible and will filter out observations (and variables) as soon as possible. Since obs with age NE 12 have been
removed, SRC (4) is a small data set.

To increase speed, the Optimizer has eliminated both variables and observations.

Appendix — SQL Method and Tree Page 30 of 57

SUGI 30 Data Warehousing, Management and Quality

x*x*exanple 14 *This shows a cal cul ation*****x*x*:
proc sgl _Method _tree;
title "EX14 this illustrates a = cal cul ation";
sel ect nane, sex, age*1l2 as ageno
from sashel p. cl ass ;

A Calculation in SQL

NOTE: SQL execution met hods chosen are:
Sgxslct (1) this indicates a selection of observations
Sgxfil (2) this indicates the application of a predicate “late” in the process
sqgxsrc(SASHELP. CLASS) (12) this indicates a selection of observations

Tree as pl anned. /- SYM V- (cl ass. Name: 1 fl ag=0001)
[-0BI--1-| (7) The optimizer passed Agemo

(3) | --SYM V- (cl ass. Sex: 2 flag=0001) to (2) but not age
\ - SYM A- (agenp: 1 fl ag=0031)

| (2) /- SYM V- (cl ass. Nanme: 1 fl ag=0001
[~ [-0BJ----] (11)
| (8) | --SYM V- (cl ass. Sex: 2 flag=0001)
Fil | \ - SYM V- (cl ass. Age: 3 fl ag=0001)
is the late |--SRG----|
application (4) \ - TABL[SASHELP] . cl ass opt=""
of a --enpty- (9)
predicate . inn‘g: ;_
- en‘pt y_
(5) /- SYM A- (agenp: 1 fl ag=0031)
| | [-ASGN\--F| (12)
| | | (10) | /- SYM V- (cl ass. Age: 3)
I I I \-AMUL---] (14)
| | | (13) \-LITN(12)
| \ - OBJE---|
I

- - SSEL---
(1)

Here we see the multiplication calculation and assignment (AMUL)in the SYM-A (10, 12, 13). The variable age is required in object
(8) but is not passed through to object (3) Note that the variable, agemo, is passed through summary object (3).

Fil means that there is a filter that is applied here, that can not be applied earlier (to the right).
Since age is not in the output of the query, the data engine would ‘like” to not bring age into the result set. However, the data engine
can not do the multiplication required for agemo. The Optimizer directs that the data engine bring in age so that SQL can use it in

the multiplication. SQL calculates agemo and passes up the result. At the next higher level, the filter (2) on the variable age can be
applied to reduce the size of the data set.

NOTE t hat an OBJE, as well as an OBJ, can be passed to the left.

Appendix — SQL Method and Tree Page 31 of 57

SUGI 30

Data Warehousing, Management and Quality

x*xrexanple 15 *****Thjg j||lustrates a di Vi sion******x*xkxk,
proc sgl _Method _tree;
title "EX15 this illustrates a = division";

. A Calculation in SQL
sel ect nanme, sex, height/12 as H _feet

from sashel p. cl ass

where age = 12 <

order by nane desc ;

<4— Assign to a variable called
agemo the result of an
Arithmetic Multiplication (AMUL)
NOTE: SQL execution nethods chosen are: of age * 12 (a numeric literal).

Sgxslct (1) this indicates a selection of observations

Sgxsort (2) this indicates a SORT
Sgxfil (4) this indicates the application of a predicate late isf the process
sqgxsrc(SASHELP. CLASS) (9) this indicates a selection of Observations

Tree as pl anned. /- SYM V- (cl ass. Nane: 1 fl ag=0001)
[-0BJ---- (7)
(3) | --SYM V- (cl ass. Sex: 2 fl ag=0001)
\-SYMA-(Ht _feet:1 flag=0031)

The optimizer passed Ht_feet to
(2) but not Height

I
I
/ - SORT- - - |
| (2) | /- SYM V- (cl ass. Nanme: 1 fl ag=0001
| | /-0BJ----| (13)
| | | (8) | --SYM V- (cl ass. Sex: 2 fl ag=0001)
| | | \-SYM A (Ht _feet:1 flag=0031)
| [--FlL----|
| | (4) | /- SYM V- (cl ass. Nane: 1 fl ag=0001)
I I I [-0BJ---- (19)
| | (14) | --SYM V- (cl ass. Sex: 2 flag=0001)
| Eil | \ - SYM V- (cl ass. Hei ght: 4 flag=0001)
| - % -t
| coplication | (9 | |-~ TABLISASHELP] ol sss opt='" Note how early the
} of a I | \ - E)EQ) . (20) (Age: 3) Optimizer applies the
[predicate || (16) \- LI TN(12) where age=12 to
| | - -enpty- make the file small.
I | - - enpty-
I | | --enpty-
| | | --enpty- Assign to a
I I I (10) - ASGN-- | /- 82(2/;36\ (Ht _feet:1 flag=0031) variable called
| | | | (1) | /- SYM V- (cl ass. Hei ght : 4] Htfeetthe
| | | | \-ADI V-] (23) result of an
| | | | (22) \-LITN(12) Arithmetic
| | \- OBJE--| | Division (ADIV)
| | --empty- (11) of Height/ 12 (a
| } 5} 1= SYM V- (cl ass. Nane: 1) numeric
| | /-DESC---| |(18) literal).
| \ - ORDR- - - | (12)
--SSEL---| (6)
(1)

Note the ordering (12) and the division (ADI V).

Fil means that there is a filter that is applied here, that can not be applied earlier (to the right). The data engine handles the age=12
restriction.

Since height is not in the output of the query, the data engine would ‘like” to not bring height into the result set. However, the data
engine can not do division for Ht_feet. The Optimizer directs that the data engine bring in height so that SQL can use it in the
division. SQL calculates Ht_feet and passes up the result. At the next higher level, the filter on the variable height, can be applied to
reduce the size of the data set.

Appendix — SQL Method and Tree Page 32 of 57

SUGI 30

Data Warehousing, Management and Quality

*xxxxexanpl e 16 *** SUMVARY W THOUT GROUPI NGF* * %% % % %%k xsx st

proc sgl _Method _tree;
title "EX16 this illustrates a = summary w t hout grouping";
sel ect nanme, sex, height, mn(height) as shortest , max(height) as t
from sashel p. cl ass order by nanme

NOTE: The query requires renerging

NOTE: SQL execution met hods chosen are:
Sgxsl ct
Sgxsort (4) this indicates a SORT
Sgxsumm

(1) this indicates a selection of observations

(6) this indicates summation without

al | est

dat a.

summary statistics back with original
\ Remerging is associated with the AGGR

and takes another pass through the data

groupi ng-a summary of

the whol e table

sqgxsrc(SASHELP. CLASS) (11) this indicates a selection of observations

Tree as pl anned.

/- SYM V- (cl ass. Nane: 1 fl ag=0001)

/-0BJ----| (9)
| (5) | --SYM V- (cl ass. Sex: 2 flag=0001) Newly created “assignment”
| | - - SYM V- (cl ass. Hei ght : 4 fl1 ag=0001) | variables continue to be
| | --SYM A-(shortest: 1 flag=0039) passed leftward
| \-SYM A-(tallest:2 flag=0039)
/- SORT- - - |
| (4) | /- SYM V- (cl ass. Nane: 1 flag=0001)
I I [-0BJ----| (18)
| | | (10) | --SYM V- (cl ass. Sex: 2 fl ag=0001)
| | [| --SYM V- (cl ass. Hei ght: 4 flag=0001) -
I | | | -- SYM A- (shortest:1 flag=0039) New “assignment”
| | | \-SYM A-(tallest:2 flag=0039) vars. passed to (6)
I [--AGR - - |
| | (6) | /- SYM V- (cl ass. Hei ght: 4 fl ag=0001)
— /-0BI----| (26)
This is | (19) | --SYM V- (cl ass. Nane: 1 fl ag=0001)
a pass \ - SYM V- (cl ass. Sex: 2 flag=0001)
through || --SRG ---|
the data (11) \ - TABL[SASHELP] . cl ass opt=""
to apply --enpty- (20)
the T-empty-
- | --enpty-
criteria - enpty- Function 6 is
(12) | ASQ-- | /- (S;(% A-(shortest:1 flag=0039)| «find minimum?®
_ | | | (21) \- SYM G (#TEM3001: 1 stat=6,0 from |
Hei ght (0, 0)) Craata hwn variahlac via statictical fiinctinne |
(3) | | | - - OBJE---|
| | | (13) | /-SYMA-(tallest:2 flag=0039)
[| \-ASGN---| (28)
| Tlst (15) [(22) \ - SYM G (#TEMX002: 2 stat=5,0 from
Hei ght (0, 0)) and Eiinctinn & ic éfind mavimum? |
(2) I Slst (16) | --empty- .
I help I (Tié)T l/-(S\Z(g/;G(#TENGOOl: 1 stat=6,0 from Height(0,0))
manage | (15) \- SYM G (#TEM3002: 2 stat=5,0 from Hei ght (0, 0))
[druz | /- SYM S- (Hei ght : 3 ss=0018x)
criteria - -
} \ \S'f)T I 29 TLST & SLST hold
T TPty
| | (7) / - SYM V- (cl ass. Nane: 1) parameters for the
| | [-ASC----| (25) aggr subroutine
| \-ORDR---| (17)
--SSEL---| (8) Info. For sorting/ordering
(1)

Note the creation of the variables shortest and tallest in ASGNs (21) and (22)).)

Appendix — SQL Method and Tree

Page 33 of 57

SUGI 30 Data Warehousing, Management and Quality

R R R Ik b S S I S R R S S S S S b S S I O kS S S S S S
’
ER R Rk b S S I S S R R S S I kb S S Rk kb b S S kS
’
R Rk b b S S R R Rk kI S S S Rk kS S S Sk R R e e S S S S
H

kkkkkkkkkk k% JO NS R R R b b S b S S S I S I I S R R Rk S S S I I S S

data | eft_class(drop= R ndxName index=(LI ndxNane))
Ri ght _cl ass(drop= LI ndxNanme i ndex=(Rl ndxNane));

l ength name $ 13;

set sashel p. cl ass;

do i=1 to 1200; /*expand file so we do not hash*/
nane=nane| | put (i, 5. 0);
Rl ndxNanme=nane;
LI ndxNane=narme;
Qut put;
end;
run;

NOTE: There were 19 observations read fromthe data set SASHELP. CLASS.
NOTE: The data set WORK. LEFT_CLASS has 22800 observations and 7 variabl es

NOTE: Sinple index LlIndxNanme has been defi ned.

NOTE: The data set WORK. RI GHT_CLASS has 22800 observations and 7 vari abl es.

NOTE: Sinple index RIndxNane has been defi ned.

NOTE: DATA statenment used (Total process tine):
real time 4. 05 seconds
cpu tinme 0. 27 seconds

Create two tables that allow us to examine joins done in several ways. We will examine joins with indexes in Left position, in right
position, and in both positions.

Appendix — SQL Method and Tree Page 34 of 57

SUGI 30

Data Warehousing, Management and Quality

*****exarrpl e 17 *kk k% Ieft JOI n ****************;

Proc SQ _nethod _tree; title "EX17 Illustrating a left join"
create table hope as sel ect coal esce(l.nanme, r.nane), |.sex, r.age
Fromleft _class as | left join right_class as r on |.nanme=r. nang;
NOTE: SQ. execution nethods chosen are:
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nmerge type of join
sgxsort (11) this indicates a SORT
sqgxsrc(WORK. RI GHT_CLASS(al i as=R)) (16) this indicates a selection of
sgxsort (12) this indicates a SORT
sqgxsrc(WORK. LEFT_CLASS(al i as=L)) (20) this indicates a selection of observations
Tree as pl anned. /- SYM A- (#TEMAOOL: 1 fl ag=0035)

o index. Use
ort merge join

wz

observati ons

/-0BI----| (10)
| (3) [--SYMV-(I.Sex:2 flag=0001) CiozlizsEeel VL.
| \ - SYM V- (r. Age: 3 fl ag=0001)

/- OTRI- - - |

| (2) | /- SYM V- (r.nane: 1 flag=0001)
|
|

/-0BJ----| (25)
| (15) \ - SYM V- (r. Age: 3 fl ag=0001)
/ - SORT- - - |
| (12) | /-SYM V- (r.nanme: 1 fl ag=0001)
. - | | /-0BJ----| (34)
if ends in | | | (26) \- SYM V- (r. Age: 3 fl ag=0001)
1= left join, | | --SRC---| .
2=right join | | (16) \ - TABL[WORK] . ri ght _cl ass opt=""
L | | --enpty- (27)
3=full join | | (17) /- SYM V- (r . nane: 1)
| | /-ASC----| (35)
and we | \-ORDR---| (28)
h - - FROM - - | (18)
e (4) [/- SYM V- (1 .nanme: 1 flag=0001)
variations | /-0BJ---- (29)
on above | I (19) \ - SYM V- (l .Sex: 2 fl ag=0001)
\ - SORT- - - |
(12) | /-SYM V- (I .name: 1 fl ag=0001)
| /-0BJ----| (36)
: : | | (30) \-SYM V- (1. Sex: 2 flag=0001)
| | |--SRC----|
| | | (20) \-TABL[WORK] . | eft _cl ass opt=""
| | | --enpty- (31)
| | | (21) /- SYM V- (1. nane: 1)
| | | | -ASC---| (37)
| | \-ORDR---| (32)
| | --empty- (22)
| | (5) /- SYM V- (r. nane: 1)
| |--CEQ---] (13)
| | (6) \ - SYM V- (| . nane: 1)
| | ‘ JTAG if ends in
I I - 'gl)AG(J ds=1, tagfromel, flags=0) 1= left join, 2=right join 3=full join
| | --enmpty-
| | (8) / - SYM A- (#TEMAOOL: 1N=oo31)
| | [-ASGN\---] (23)
| | | (14) | /- SYM V- (I . nane: 1)
| | | \-FCOA---| (33) Coalesced Var. -
| | | (24) \- SYM V- (r. nane: 1) note: the query did
- SSEL--- I ‘- (C%]E' 1! not specify a name
(1) for it
Appendix — SQL Method and Tree Page 35 of 57

SUGI 30 Data Warehousing, Management and Quality

*****exarrpl e 17A * k%% rl ght jOI n ***************;

Proc SQL _nethod _tree; title "EX17A Illustrating a right join"
create table hope as sel ect coal esce(|.nane, r.nane), |.sex, r.age
Fromleft_class as | right join right_class as r on |.name=r.nnang;

No index.

NOTE: SQL execution nethods chosen are: Use Sort merge join
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nerge type of join

Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observations
sgxsort (12) this indicates a SORT

sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

Tree as pl anned. /- SYM A- (#TEMAOO1: 1 fl ag=0035)
/-OBJ----| (10)
| (3) | --SYM V- (1. Sex:2 flag=0001) Coalesced Var.
\-SYM V- (r. Age: 3 fl ag=0001)
/- OTRI---|
(2) | /-SYM V- (I.nanme:1 flag=0001)
| /-OBJ----] (25)
| (15) \ - SYM V- (I . Sex: 2 flag=0001)
/- SORT- - - |
(11) | /-SYM V- (I.nane:1 flag=0001)
| [-OBJ----| (34)
/ JTAG | | (26) \-SYMV-(I.Sex:2 flag=0001)
if ends in | I--SRC—---|\ : . ef |
_ s (16) - TABL[WORK] . | ef t _cl ass opt=""
1= left join, | [--enmpty- (27)
2=right join | | (17) /- SYM V- (I . name: 1)
—_ i | | [-ASC----] (35)
3=full join | \-ORDR --| (28)
h--| (18)
| /-SYM V- (r.nane: 1 flag=0001)
el s | /-0BJ----| (29)
have | | (19) \-SYM V- (r. Age: 3 flag=0001)
variations \ - SORT---|
(12) | /-SYMV-(r.nane: 1 flag=0001)
on above | /-0BJ----| (36)
| | (30) \-SYM V- (r. Age: 3 flag=0001)
|--SRC---|
| (20) \ - TABL[WORK] . ri ght _cl ass opt=""
| -- enpty- (31)
| (21) /- SYM V- (r.nane: 1)
| /-ASC----| (37)
\-ORDR---| (32)
--enpty- (22)
(5) /-SYM V- (I .nane: 1)
ROBRE :
- -(r.nane: . o
(8) () JTAG if ends in
|--JTAQj ds=2, tagfrome2, flags=0) 1= left join, 2=right join 3=full join
(7)
--enpty-
(8) / - SYM A- (#TEMAOO1: 1 f1 ag=0031)
-ASGN---| (23)
I (14) l\-FCCA---I /'%g’;v'(l'nam' D Coalesced Var. -
| (24) \ - SYM V- (r. nane: 1) note: the query did
- SSEL--- \- %;E' -l not specify a name
(1) for it

Appendix — SQL Method and Tree Page 36 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQL _nethod _tree;
title "EX17B Illustrating an INNER JON WTH COWA with index on left table"

create table hope as

sel ect coal esce(l.nanme, r.nanme), |.sex, r.age
Fromleft_class as | , right_class as r
where |.LindxNane = r.naneg;

Indexed variable in where but SQL uses Hashing.
NOTE: SQL execution nethods chosen are:

Sgxcrta (1) thisindicates aselection of observations
Sgxj hsh (2)isahashjoin
sgxsrc(WORK. LEFT_CLASS(alias = L)) (10)indicates aselection of observations
sgxsrc(WORK. RIGHT_CLASS(alias = R)) (11)indicates aselection of observations

Tree as pl anned. / - SYM A- (#TEMAOO1: 1 fl ag=0035)
/-0BJ----| (9)
| (3) | --SYM V- (1. Sex: 2 flag=0001) Coalesced Var.
| \-SYM V-(r. Age: 3 flag=0001) Riit nn Indeved \/ar
/[-JON---|
| (2 | /- SYM V- (I . LI ndxNane: 7 fl ag=0001)
| T /-0BJ----1 (20) We need the
Hash | (14) |--SYM V- (Il .nane: 1 flag=0001) Indexed
| | \-SYM V- (I.Sex:2 flag=0001)
| /-SRG--- | Var. for a
| See | (10) \- TABL[WORK] . | ef t _cl ass opt="" while.
| Method pw--| (15) —
| s | /-SYM V- (r.nane: 1 flag=0001) NO Index Var. in
| | ' o I e this SRC
| | | | (16) \ - SYM V- (r. Age: 3 flag=0001)
| | \-SRC----|
| | (11) \ - TABL[WORK] . ri ght _cl ass opt=""
| | --enpty- (17)
| | (5) /- SYM V- (I . LI ndxNane: 7)
I [--CEQ---| (12) Compare index var. with non-indexed var.
| | (6) \ - SYM V- (r. nane: 1) and then drop indexed var.
| | --enpty-
| | --enpty-
| | (7 /- SYM A- (#TEMAOO1: 1 fl ag=0031)
| | /-ASGN--|| (18)
| | | (13) | /- SYM V- (I . nane: 1) Coalesced Var.
| | | \ - FCOA- - - | (22)
| | | (19) \-SYM V- (r.nane: 1)
| \- OBJE---|
-- SSEL---| (8)
(1)

L.name and R.name are coalesced (8, 13,18,19,22) and stored in a SYM-A variable (18) and kept as part
of the output (9). While an index exists on the variable on the left side of the join, a hash join was
selected by the optimizer.

Appendix — SQL Method and Tree Page 37 of 57

SUGI 30

Proc SQL _nethod _tree;

Data Warehousing, Management and Quality

title "EX17C Illustrating an INNER JON WTH COWA with index on Rl GHT table" ;

create table hope as
sel ect coal esce(l.nanme, r.nane), |.sex,
where |.nanme = r. Rl ndxNane;
NOTE: SQ. execution nethods chosen are:
Sgxcrta (1) this indicates a selection of observatio
Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16)
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20)
Tree as pl anned. /- SYM A- (#TEMAOO1: 1 f 1 ag=0035)

r.age

Fromleft_class as | ,

Coalesced Var.

/-SYM V- (r. Rl ndxName: 7 flag=0001)

right_class as r

Indexed variable in where but SQL uses merge join

indicates a selection of observations

indicates a selection of observations

But no Index Var.

NO Index
Var. here

Index Var. passed up
for equality check

Index Var. kept
just for sort &
equality check

Compare index var. with non-indexed var.
and then drop indexed var.

Coalesced Var.

/-0BI----] (9)
| (3) | --SYM V- (I.Sex: 2 flag=0001)
| \-SYM V- (r.Age: 3 fl ag=0001)
/-JON---|
| (2) | /-SYM V- (l.name: 1 flag=0001)
| [[-CBJ----| (24)
| | | (14) \- SYM V- (1. Sex: 2 flag=0001)
| | /- SORT- - - |
| | | (10) | /-SYM V- (l.nane:1 flag=0001)
I | I | /-0BJ----]| (34)
| | | | | (25) \- SYM V- (1. Sex: 2 flag=0001)
| | | | --SRC----|
| | | | (15) \- TABL[WORK] . | eft _cl ass opt=""
I | I | -- enpty- (26)
| | | | (16) /- SYM V- (1. nane: 1)
I | I | /-ASC----| (35)
| | | \-ORDR---| (27)
| | -- FROM - - | (17)
| | (4) | /- SYM V- (r. R ndxNarme: 7 flag=0001)
I | I [-0BJ----] (28)
| | | | (18) | --SYM V-(r.nane:1 flag=0001)
| | | | \-SYM V- (r.Age: 3 fl ag=0001)
| | \ - SORT- - - | (29)
I | (1) |
I | | /-0BJ----] (36)
| | | | (30) | --SYM V-(r.nane:1 flag=0001)
| | | | \-SYM V - (r.Age: 3 flag=0001)
| | | --SRC----|
| | | (19) \- TABL[WORK] . ri ght _class opt=""
I | | -- enpty- (31)
| | | (20) /- SYM V- (r. Rl ndxNane: 7)
I | | [-ASC----] (37)
| | \-ORDR- - - | (32)
I | --enpty- (21)
| | (5) /- SYM V- (1. nane: 1)
I |--CEQ---1 (12)
| | (6) \ - SYM V- (r. Rl ndxNane: 7)
I | --enpty-
I | --enpty-
| | (7 /- SYM A- (#TEMAOO1: 1 flag=0031)
| | /- ASGN-{ - | (22)
| | | (13) | | /- SYM V- (1. nane: 1)
| | | \-FCOA---| (33)
| | | (23) \-SYM V- (r.nane: 1)
| \- OBJE- - - |
-~ SSEL---| (8)
(1)

Appendix — SQL Method and Tree Page 38 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQL _nethod _tree;
title "EX17D Illustrating an INNER JON WTH COWA with index on BOTH tabl es"”
create table hope as

i

sel ect coal esce(l.nanme, r.nane), |.sex, r.age Fromleft_class as | , right_class as r
where |.LindxName = r.RIndxNane;

2 Indexed vars. in where, but SQL uses hash

NOTE: SQL execution nethods chosen are:

Sgxcrta (1) thisindicates a selection of observations
Sgxj hsh (2) isahashjoin

sgxsrc(WORK. LEFT_CLASS(alias = L)) (10) indicatesaselection of 0

sqgxsrc(WORK. RI GHT_CLASS(alias = R)) (11)indicatesaselection of observations

SQL uses hash

Tree as pl anned.
/- SYM A- (#TEMAOOL: 1 1 ag=0035)

/-0BJ----| (9) Coalesced Var. But no Indexed Vars.
| (3) | --SYM V- (I.Sex: 2 flag=0001)
| \-SYM V- (r.Age: 3 flag=0001)

[-JON---| Indexed Var.

| (2) | /- SYM V- (r. Rl ndxNare: 7 fl ag=0001) needed for

A) "__l S TEE IS
| (14) | --SYM V- (r.nane: 1 flag=0001)
Hash

| \-SYM V-(r.Age: 3 flag=0001)
Join- /-SRG----|
See | (10) \ - TABL[WORK] . ri ght _cl ass opt="" .
Methods | - - FROM - (15) Indexed Var.
(4) L’;“s‘;’;;’z‘; /- SYM V- (I . LI ndxName: 7 f|ag=0001) needed for
for equality |~ 0BJ----| (21 where CEO
| | elhEEk (16) | --SYM V- (l.name: 1 flag=0001) -
| | \-SYMV-(I.Sex:2 flag=0001)
| | \-SRC----|
| | (11) \- TABL[WORK] . | ef t _cl ass opt=""
| | --enpty- (17)
| | (5) /- SYM V- (r. Rl ndxNane: 7)
| |--CEQ---] (12) Index Vars. used in equality check
| | (6) \ - SYM V- (I . LI ndxNane: 7)
| | --enpty-
| | --enpty-
| | (7) /- SYM A- (#TEMA0O1: 1 fl ag=0031)
| | /-ASGN--| (18)
| | | (13) | /-SYM V- (I . name: 1 Coalesced Var.
| | | \-FCOA---| (22)
| | | (19) \ - SYM V- (r. nane: 1)
| \- OBJE---|
|

- - SSEL- - -
(1)

Appendix — SQL Method and Tree Page 39 of 57

SUGI 30

Data Warehousing, Management and Quality

*xx**exanple 18 ***| NNER JO

Proc SQL _nethod _tree;
create table hope as sel ect coal esce(
Fromleft_class as | inner join right_cl
NOTE: SQL execution nethods chosen are:

Sgxcrta (1) this indicates a selection
Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT

sgxsr c(WORK. LEFT_CLASS(al i as=L))

sgxsort (12) this indicates a SORT

sgxsr c(WORK. RI GHT_CLASS(al i as=R)

Tree as pl anned.

title "EXL8A Showi ng | NNER JON W

/- SYM A- (#TEMAOO1: 1 f| ag=0035)

N specifying | NNER JO N Phrase ****#**xkxxx.

I NNER JO N Phrase-no index";
r.age
r. nane;

| . nane,
ass as r

r.nane), |.sex,
on |.nane =

No indexed variables. in the inner

of observations join “where”, SQL sorts

(16) indicates a selection of obser

) (20) indicates a selection of observations

[-0B----1 (9) Coalesced Var.
| (3) | --SYM V- (I.Sex: 2 flag=0001)
| \-SYM V- (r.Age: 3 flag=0001)
/-JON---|
| (2) | /-SYM V-(I.name: 1 flag=0001)
| | /-0BJ----] (24)
| [| (14) \-SYM V- (1. Sex: 2 flag=0001)
| /- SORT---|
M | (10) | /-SYMV-(l.name:1 flag=0001)
erge | | [-OBI----| (32)
| Join | | | (25) \-SYM V- (1. Sex: 2 flag=0001)
| | |--SRC----|
| See | | (15) \ - TABL[WORK] . | ef t _cl ass opt=""
I| Methods | | -- enpty-
I | | (16) /- SYM V- (I . nane: 1)
| T | | 1-ASC ---| (33) Sort Info
| | | \ - ORDR- - - | (26) passed up
| | - - FROM - - | (17)
| | (4 | /-SYM V- (r.nanme:1 flag=0001)
| | | [-0BJ----| (27)
| [| | (18) \-SYM V- (r. Age: 3 flag=0001)
| | \- SORT---|
| | (11) | /-SYMV-(r.name:1 flag=0001)
| | | [-0BJ----| (34)
| [[| (28) \-SYM V- (r. Age: 3 flag=0001)
| ! |--SRC----|
| | | (19) \ - TABL[WORK] . ri ght _cl ass opt=""
| | | -- enpty- (29)
| | | (20 /- SYM V- (1. name: 1) S e
I | [[-ASC----| (35) passed up
| | \ - ORDR- - - | (30)
| | --enpty- (21)
| | (5) /-SYM V- (I.nane: 1) . .
| |--CEQ---| (12) equality check info passed up
| | (6) \-SYM V-(r.nane: 1) \!
| | -enpty /- SYM A- (#TEMAOO1: 1 fl ag=0031)
| I (7 [-ASGN-|-| (22)
| | | (13) | /- SYM V- (I.nane: 1)
| | | \-FCOA---| (31) Coalesced Var. passed up
| | | (23) \ - SYM V- (r.nane: 1)
(1) | \- OBJE---|
-~ SSEL-- - | (8)
Appendix — SQL Method and Tree Page 40 of 57

SUGI 30

Proc SQL _nethod _tree;
title "EX18B INNER JON W |INNER JON Phrase w index on |left table";

create table hope as
sel ect coal esce(l. nane,

From left_class as |

on |.LindxNanme = r.nane;

NOTE: SQL execution nethods chosen are:

Data Warehousing, Management and Quality

r.nane), |.sex, r.age

nner join right_class as r
Use the inner join phrase
Left var has index

Sgxcrta (1)thisindicates aselection of observations
Sgxj hsh (2)isahashjoin
sgxsrc(WORK. LEFT_CLASS(alias = L)) (10)indicates aselection of observations

sgxsrc(WORK. RIGHT_CLASS(alias = R)) (11)indicates aselection of observations

Tree as pl anned.

-- SSEL- - -
(1)

/-Ja
(2)

|
|
N--- |
|

Hash

See
Methods M - -

/-0BJ----

(3)

- enpty-
(%)

(6)
- enpty-
- enpty-
(7)

--CEQ---

Appendix — SQL Method and Tree

/- SYM A- (#TEMAOO1: 1 f| ag=0035)

(9) NO LindxName passed up
SYM V- (1. Sex: 2 flag=0001)

\-SYM V- (r.Age: 3 fl ag=0001)

I

Used and
/- SYM V- (I . LI ndxNane: 7 f1ag=0001) CTeEAGEE
[-oB----] (20 ASAP
| (14) |--SYMV-(l.nane: 1 fl ag=0001)
| \-SYM V- (I.Sex:2 flag=0001)
/-SRC ---|
(10 \ - TABL[WORK] . l eft _cl ass opt=""
(15)
/-SYM V- (r.nane: 1 flag=0001)
/-0BJ----] (21)
| (16) \-SYM V- (r. Age: 3 fl ag=0001)
\-SRG---|
(11) \ - TABL[WORK] . ri ght _cl ass opt=""
(17)
/- SYM V- (I . LI ndxNane: 7) - -
(12) equality check info passed up

\-SYM V- (r.nane: 1)

Put Into this var.
/- SYM A- (#TEMAOO1: 1 fl ag=0031)

/-ASGN--F| (18)

(13) | /-SYM V- (] .nane: 1) I |

\-FCOA---| (22) 2 Coalesced Vars.

(19) \-SYM V- (r.nane: 1)

Page 41 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQL _nethod _tree; title "EX18C INNER JON WINNER JO N Phrase w index on RIGHT tablg"
create table hope as sel ect coal esce(|.nanme, r.nane), |.sex, r.age
Fromleft_class as | inner join right_class as r on |.name = r. Rl ndxNang;
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observations
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

No indexed
variables. in the
inner join

“where”, so SQL
sorts

Tree as pl anned. /- SYM A- (#TEMAOO1: 1 fl ag=0035)

/-OBJ----] (9) Coalesced Var.

| (3) | --SYM V- (I.Sex:2 flag=0001)

| \-SYM V- (r.Age: 3 flag=0001)

/-JON---|
| (2) | /-SYMV-(l.nanme:1 fl ag=0001 NO RIndxName passed up
| | [-0BI----| (24)
L~ ~~_ | (14) \-SYM V- (1. Sex: 2 flag=0001)
Merge /- SORT- - - |
Join | (10) | /-SYM V- (l.nanme: 1 flag=0001)
| | [-0BJ----] (33)
See | | | (25) \-SYM V- (I . Sex: 2 flag=0001)
| |--SRC---- |
Methods | | (15 \-TABL[WORK].left class opt=""
T . | |-- enpty- (26)
| | | | (16) /- SYM V- (I.nane: 1)
| | | | /-ASC----| (34)
| | | \-ORDR---| (27)
| | - - FROM - - | (17) Used and
| | (4) | /- SYM V- (r. R ndxNane: 7 f|ag=0001) discarded
| | | /-0BJ----| (28) ASAP
| | | | (18) | --SYMV-(r.nanme: 1 flag=0001)
| [| | \-SYM V- (r.Age: 3 flag=0001)
| | \ - SORT- - - |
| | (11) | /- SYM V- (r. Rl ndxNare: 7 flag=0001)
| | | [-0BJ----] (35)
| | | | (29) | --SYMV-(r.name: 1 flag=0001)
| [[| \-SYM V- (r.Age: 3 flag=0001)
| | |--SRC---- |
| | | (19) \ - TABL[WORK] . ri ght _cl ass opt=""
| | |-- enpty- (30)
| | | (20) /- SYM V- (r. Rl ndxNane: 7)
| | | /-ASC - --| (36)
| | \-ORDR---| (31)
| |--empty- (21)
| | (5) /- SYM V- (I .name: 1)
| [--CEQ---| (12) equality check info passed up
| | (6) \ - SYM V- (r. Rl ndxNane: 7) [
| | --enpty- ~
| | - - enpty- / - SYM|A- (#TEMAOO1: 1 f| ag=0031)
| | (7 /-ASGN--4] (22)
| | | (13) | /- SYM V- (I.nane: 1)
| | | \-FCOA---| (32) Coalesced Var.
| | | (23) \ - SYM V- (r. nane: 1)
(1) | \-OBJE---|
-~ SSEL-- - | (8)

Appendix — SQL Method and Tree Page 42 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQL _nethod _tree; title "EX18D INNER JON WINNER JO N Phrase w index on BOTH tabl es";
create table hope as

sel ect coal esce(l.nanme, r.nane), |.sex, r.age
From left_class as | inner join right_class as r
on |.LindxName = r.RI ndxNang;

Use INNER JOIN Phrase in this

NOTE: SQ execution methods chosen are: example! Two vars have index
Sgxcrta (1) thisindicates aselection of observations
Sgxj hsh (2)isahashjoin
sgxsrc(WORK. LEFT_CLASS(alias = L)) (10)indicatesaselection of observations
sgxsrc(WORK. RIGHT_CLASS(alias = R)) (11)indicates aselection of observations

Tree as pl anned.

/- SYM A- (#TEMAOO1: 1 fl ag=0035) Coalesced Var.
/-0BJ----] (9)
| (3) | --SYM V- (1. Sex: 2 fl ag=0001)
| \-SYM V- (r.Age: 3 flag=0001)
[-JON---|
| (2 | /- SYM V- (r. Rl ndxNane: 7 flag=0001) / Usedand

| /-0BJ----] (21) discarded
i > | (15) | --SYM V- (r.nane: 1 flag=0001) ASAP
HASH

| \-SYM V-(r.Age: 3 flag=0001)
Join /-SRG---|
| (10) \ - TABL[WORK] . ri ght _cl ass opt=""
See -~ FROM - -| (16) Used and
Methods (4) | /- SYM V- (| .LIndxNane: 7 fl ag=0001) discarded
| [-0BI----| (22)
I | | | (17) |--SYMV-(I.name:1 flag=0001) ASAP
| | | | \-SYM V- (I.Sex:2 flag=0001)
[| \-SRC--- - |
| | (11) \- TABL[WORK] . | eft _cl ass opt=""
| | --enpty- (18)
| | (5) /- SYM V- (r. R ndxNane: 7)
| |--CEQ---|] (12) equality check info passed up
| | (6) \ - SYM V- (I . LI ndxNane: 7)
| | --enpty- (13)
| | --enpty-
| | (7) /- SYM A- (#TEMAOO1: 1 flag=0031)
| I /-ASGN-F-| (19)
| | | (14) [| /- SYM V- (I . nare: 1) Coalesced Var.
| I | \-FCOA---| (23)
| | | (20) \-SYM V- (r.nane: 1)
| \ - OBJE---|
--SSEL---| (8)
(1

Appendix — SQL Method and Tree Page 43 of 57

SUGI 30 Data Warehousing, Management and Quality

*****exanpl e 19 ********LEFT JO I\IS kkkkkhkkkhkhkkhkhkkhkhkkx.

Proc SQ. _nethod _tree; title "EX19A Illustrating a left join with no
create table hope as sel ect coal esce(|.nanme, r.nanme), |.sex, r.age
Fromleft_class as | left join right_class as r on |.name = r.nane;
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observatMons
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

jndexes" ;

Use LEFT JOIN Phrase!
No index to use

Tree as pl anned. /- SYM A- (#TEMAOO1: 1 fl ag=0035)
/-0BI----] (10) Coalesced Var.
| (3) | -- SYM V- (I.Sex: 2 flag=0001)
| \-SYM V- (r.Age: 3 fl ag=0001)
/- OTRI-- - | R.Name is
| (2 | /- SYM V- (r.name: 1 flag=0001) Passed up, used
| /-0BJ----] (25) & discarded
| (15) \- SYM V- (r. Age: 3 flag=0001)
ITAG . - after coalesce.
| | if ends in | (11) | /-SYM V- (r.nanme: 1 flag=00
I | 1= left join, | | /-0BJ----] (38)
| | 2=right join | | | (26) \-SYM V- (r. Age: 3 flag=0001)
I | 3=full join | |--SRC----|
| | | (16) \ - TABL[WORK] . ri ght _class opt=""
Merge | | --enpty- (27)
. | | (17) /- SYM V- (r. nane: 1)
notation of
OIN | I /-ASC----] (39) -
J | \-ORDR---| (28) L.Name is
Or OTRJ M- - | (18) Passed up,
| /- SYM V- (I .nane: 1 flag=0001) used &
Merg joins can be | 1-0BJ----| (29 discarded after
used for inner | | (19) \-SYM V- (I.Sex:2 flag=0001) coalesce
join or outer joins \ - SORT- - - |
(12) | /-SYMV-(l.nane: 1 flag=00
| | | [-OBJ----| (40)
| [[| (30) \- SYM V- (1. Sex: 2 flag=0001)
| | | -- SRC----|
| | | (20) \ - TABL[WORK] . | eft _cl ass opt=""
| I |-- enpty- (31)
| | | (21) /-SYM V- (] .nane: 1)
| I I /-ASC----| (41)
| I \-ORDR---| (32)
| --enpty- (22)
JTAG: if ends | (5) /- SYM V- (r. nane: 1) . A
in SSCEQ---| (13) equality check info passed up the query
1= left join, (6) \-SYM V- (I . nane: 1)
2=right join --JTAQj ds=1, tagfron¥l, flags=0)
3=full join [(7
| --enpty- /- SYM A- (#TEMAOO1: 1 fl ag=0031)
| | (8) /-ASGN--{| (23) /- SYM V- (1. nane: 1)
Coalesce
| | | (14) \-FCOA---| (33) V.
I \ - CBJE-- | (24) \ - SYM V- (r. name: 1) ElSs
-~ SSEL---| (9)
(1)

Appendix — SQL Method and Tree Page 44 of 57

SUGI 30

Proc SQL _nethod _tree;
create table hope as
Fromleft_class as |
Sgxcrta
Saxj m
Sgxsort

sgxsort

Tree as pl anned.

Data Warehousing, Management and Quality

title "EX19B Illustrating a right join with index on left t/lble"
sel ect coal esce(| . nane,
left join right_class as r
(1) this indicates a selection of observations
(2) this indicates a sort-nerge type of join
(11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16)
(12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20)

r.nane),
on

|.sex, r.age
| . Li ndxNane

r.name, Use LEFT JOIN

Phrase! Left var
has index

indicates a selection of observatio

indicates a selection of observations

/- SYM A- (#TEMAOOL: 1 f1 ag=0035)

[-OBJ----| (10)
| (3) | --SYM V- (I.Sex:2 flag=0001) Coalesced Var.
| \-SYM V- (r.Age: 3 flag=0001)
/- OTRI- - - |
| (2 | /- SYM V- (r.name: 1 flag=0001) R.Name is
| [-0BJ----| (25) passed up, used
_/ _ | (15) \-SYM V- (r. Age: 3 flag=0001) & dropped after
JTAG /- SORT- - - | coalesce.
if ends in | (11) | /-SYMV-(r.name: 1 flag=0001)
1= left join, | | [-0BJ----] (36)
2=right join | | | (26) \ - SYM V- (r. Age: 3 flag=0001)
3=full join | |--SRC----] _
| | (16) \ - TABL[WORK] . ri ght _cl ass opt=""
| |-- enpty- (28)
| | | | (17) /- SYM V- (r.nane: 1)
| | | | [-ASC----] (37)
| | | \-ORDR---| (29)
| | - - FROM - - | (18) L.Name and
| /-SYM V- (I.LIndxNane: 7 flag=0001) Lindxname
Merge join has | /-OBJ----| (30) are passed up,
notation of | | (19) | --SYM V- (Il .nanme: 1 flag=0001) used &
JOIN | | \-SYM V- (I.Sex:2 flag=0001) dropped
Or OTRJ \ - SORT- - -| (31) coalesce
(12) | /-SYM V- (I.LIndxNane: 7 flag=00
. | [-0BJ----] (38)
Merg joins can be | | (32) |--SYMV-(l.nane:1 flag=0001)
used for inner [| \-SYM V- (I.Sex: 2 flag=0001)
join or outer joins |--SRC---|
- . | (20) \- TABL[WORK] . | ef t _cl ass opt=""
| | |-- enpty- (33)
| | | (21) /- SYM V- (] . LI ndxNane: 7)
| | | /-ASC---| (39)
| | \-ORDR- - - | (34)
| | --enpty- (22)
I (5 /- SYM V- (r. name: 1) equality check info passed up. Note LindxName
JTAG: if ends [--CEQ---| (13)
in (6) \ - SYM V- (I . LI ndxNane: 7)
1= left join, --JTAQjds=1, tagfromel, flags=0) A
2=right join (7) /- SYM A- (#TEMAOO1: 1 fl ag=0031)
2=fuill inin | /-ASGN---[| (23)
| |--empty- | (14) | /- SYM V- (I . nane: 1) Coalesced Var. uses
| | (8) | \-FCOA---| (35) L.name and R.name
| | | (24) \- SYM V- (r. nane: 1) but NOT LIndxName
(1) | \-OBJE---|
-~ SSEL---| (9)

Appendix — SQL Method and Tree

Page 45 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQU _nmethod _tree; title "EX19C Illustrating a left join with index on R GHT table"

create table hope as select coal esce(|.name, r.nane), |.sex, r.age
From left_class as | left join right_class as r on |.nane = r. Rl ndxNane;
Sgxcrta (1) this indicates a selection of observations Use LEFT JOIN Phrase!
Sgxjm (2) this indicates a sort-nerge type of join Right var has index
Sgxsort (11) this indicates a SORT

sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observations
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

Tree as pl anned. /- SYM A- (#TEMAOO1: 1 fl ag=0035)
/-0BJ----| (10)
(3) | --SYM V- (1. Sex: 2 flag=0001)

|
| \-SYM V- (r.Age: 3 flag=0001)
/-OTRI--- | R.IndxName

| (2) | /-SYM V- (r.R ndxNane: 7 fl ag=0001) and r.name are
/-0BJ---- 25
[[(29 passed up, used

| | (15) | --SYM V- (r.name: 1 flag=0001)
/& | \-SYM V- (r. Age: 3 flag=0001) & dropped after
JTAG -l coalesce. &CEQ

if ends in | (11) | /-SYM V- (r. Rl ndxNane: 7 flag=0001)
_ L | | [-0BJ----| (34)
L= e et | | | (26) |--SYMV-(r.name:1 flag=0001)
2=right join | | | \-SYM V- (r.Age: 3 fl ag=0001)
3=full join | |--SRC----|
| | (16) \ - TABL[WORK] . ri ght_cl ass opt=""
| | --enpty- (27)
| | (17) /- SYM V- (r. Rl ndxNane: 7)
Merge join has | | [-ASC---| (39)
tation of l ‘- -l (29 -
no | (18) L.Name and is
JOIN | /-SYM V- (1. nane: 1 flag=0001) passed up, used &
Or OTRJ | /-OBI----| (29) ;
I | (19) \-SYM V- (1. Sex: 2 1 ag=0001) dropped after
Merg joins can be \- SCRT- - - | coalesce and CEQ
used for inner join (12) | /-SYMV-(l.nane:1 flag=0001)
o | /-0BJ----| (36)
or outer joins | | (30) \-SYMV-(I.Sex:2 flag=0001)
|--SRC---]
| (20) \- TABL[WORK] . | eft _cl ass opt=""
| | | -- enpty- (31)
| | | (21) /-SYM V- (I.nane: 1)
| | | /-ASC----| (37)
| | \-ORDR---| (32)
| | -- enpty- (22) E E
- | (5) /- SYM V- (r. Rl ndxNare: 7) equality check info passed up
JTAG.. if SSCEQ---] (13)
ends in (6) \- SYM V- (I . nane: 1)
1= left join, -JTAG(j ds=1, tagfronel, flags=0)
2=right join (7
=il i | -- enpty- /- SYM A- (#TEMAOO1: 1 flag=0031)
| (8 [-ASGN--F] (23)
| | | (14 || /-SYM V- (I . nane: 1) Coalesced Var.
| | | \-FCOA---] (33)
| | | (24) \-SYM V- (r. nane: 1)
| \ - OBJE- - - |
|

- - SSEL---
(1)

Appendix — SQL Method and Tree Page 46 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQU _nethod _tree; title "EX19D Illustrating a left join with index on BOTH tables
create tabl e hope as sel ect coal esce(|.nane, r.nane), |.sex, r.age
From left_class as | left join right_class as r on |.LindxName = r. Rl ndxNane;
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observations
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations
Tree as pl anned. / - SYM A- (#TEMAOO1: 1 fl ag=0035)
[-0BJ----] (10)
| (3) | --SYM V- (I.Sex:2 flag=0001)
| \-SYM V- (r.Age: 3 flag=0001)
-1

Use LEFT JOIN
Phrase! Two vars
have index

\ - OBJE- - -
(9)

/- OTRI- -
| (2) | /-SYM V- (r.R ndxName: 7 f1ag=0001)
| [-0BJ----] (25)
| (15) | --SYM V- (r.nane:1 flag=0001) R.Name and
JTAG | \-SYM V- (r.Age: 3 flag=0001)
if ends in /- SORT- - - | r-RIndxName
1= left join, | (11) | /-SYM V- (r. R ndxNane: 7 flag=0001) are passed up,
2=right join | | /-0BJ----| (34) used & dropped
3=full join | | | (26) | --SYM V-(r.nanme: 1 flag=0001) whiEr cerlesee
| | | \-SYMV - (r.Age: 3 fl ag=0001) .
| |--SRC---]
| | (16) \ - TABL[WORK] . ri ght _cl ass opt=""
I I | -- enpty- (27)
| | | | (17) /- SYM V- (r. Rl ndxNane: 7)
L L | | /-ASC----| (35)
Merge join has I \-ORDR---| (28)
notation of ?:?w N I| o /-SYM V- (Il.LIndxNanme: 7 flag=0001)
JOIN | -BI----| (29)
Or OTRJ | | (19) |--SYMV-(I.nane:1 flag=0001) L.Name and
| | \-SYMV-(l.Sex:2 flag=0001) .
Merg joins can \- SORT--- | Lindxname are
be used for (12) | /- SYM V- (I . LI ndxName: 7 f|ag=0001) passed up, used
inner join or | [-CB---- (36) & dropped after
. | | (30) | --SYM V- (I.nane: 1 flag=0001)
outer joins | | \-SYM V- (1. Sex: 2 flag=0001) coalesce & CEQ
|--SRC---]
| (20) \- TABL[WORK] . | eft _cl ass opt=""
| -- enpty- (31)
| | | (21) /- SYM V- (I . LI ndxNare: 7)
| | | /-ASC----| (37)
| | \-ORDR---| (32)
I | --enpty- (22)
| | (5) /- SYM V- (r. RI ndxNane: 7)
| [--CEQ---] (13) equality check info passed up
ITAG: if ends (6) \ - SYM V- (I . LI ndxNane: 7)
) - JTAGQ(j ds=1, tagfron¥l, flags=0)
in N
1= left join, - enpty- /- SYM A- (#TEMAOO1: 1 f | ag=0031)
2=right join (8) [-ASGN--| (23)
2=fill inin [o(14) || /- SYM V- (I . name: 1) Coalesced Var.
| | \-FCOA---| (33)
| | (24) \-SYM V- (r. nane: 1)
|

- - SSEL---
(1)

Appendix — SQL Method and Tree Page 47 of 57

SUGI 30 Data Warehousing, Management and Quality

*****exaerI @ 20 *x*% RIGHT JOI N *% %%k kkokoskokdksk ok sk koo ks

Proc SQ. _nethod _tree; title "EX20A Illustrating a right join no indexes"
create table hope as sel ect coal esce(|.nanme, r.nanme), |.sex, r.age
Fromleft_class as | right join right_class as r on |.name = r.nane;
Sgxcrta (1) this indicates a selection of observations Use RIGHT JOIN
Sgxjm (2) this indicates a sort-nerge type of join Phrase!
Sgxsort (11) this indicates a SORT

sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observati
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

Tree as pl anned. /- SYM A- (#TEMAOO1: 1 fl ag=0035)
/-0BJ----] (10)
| (3) | --SYM V- (I.Sex: 2 flag=0001)
| \-SYM V-(r. Age: 3 flag=0001) L.Name is
/-OTRJ- - -| passed up, used
| (2) | /-SYMV-(l.nanme: 1 fl ag=0001) & dropped after
[-0B)----] (24 coalesce & CEQ
ITAG | (15) \-SYM V- (1. Sex: 2 flag=0001)
if ends in /- SORT- - -|
1= left join | (11) | /-SYM V- (I.nane: 1 fl ag=0001"
2=right join | | 1-CBJ----] (34)
3=full join | | | (25) \-SYMV-(I.Sex:2 flag=0001)
| [--SRG---|
| | (16) \ - TABL[WORK] . | eft _cl ass opt=""
T T | | T enpt y- (26)
| | | I (17) /- SYM V- (I . nane: 1)
| | | | [-ASC---] (39) r.name is
| \-ORDR- - - | (27) d d
Merge join - FROM - - | (18) passed up, use
has notation | (4) | /-SYMV-(r.name: 1 flag=0001) & dropped after
of I /-0BJ----| (28) coalesce. &CEQ
JOIN | | (19) \-SYM V- (r. Age: 3 fl ag=0001)
Or OTRJ \ - SORT- - - | (29)
(12) | /-SYM V- (r.name: 1 flag=00\ |)
Merg joins [/-0BJ----] (36)
can be used | | (30) \-SYM V- (r. Age: 3 fl ag=0001)
for inner |--SRG---|
join or outer | (20) \ - TABL[WORK] . ri ght _cl ass opt=""
joins | -- enpty- (31)
| (21) /-SYM V- (r.nane: 1)
| | | [-ASC----] (37)
| | \-ORDR- - - | (32)
| --enpty-
(5 /-SYM V- (I. nane: 1) equality check info passed up
JTAG: if -CEQ---] (13)
ends in (6) \-SYM V- (r.nane: 1)
1= left join, JTAQj ds=2, tagfrome2, flags=0)
2=right join (7)
2=f11ll inin - - enpty- / - SYM A- (#TEMAOO1: 1 fl ag=0031)
l (8) [-ASGH-1 - (22) Coalesced Var.
| | | (14) || /- SYM V- (I . nane: 1)
| | | \-FCOA---| (33)
| | | (23) \-SYM V- (r.nane: 1)
(1) | \-OBJE---|
-~ SSEL---| (9)

Appendix — SQL Method and Tree Page 48 of 57

SUGI 30

Data Warehousing, Management and Quality

Proc SQL _nethod _tree;
create table hope as
From left_class as |

Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nerge type of join

title "EX20B Illustrating a right join witn index on left tgble"
sel ect coal esce(|.nane, r.
right join right_class as r

Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) ind
sgxsort (12) this indicates a SORT

sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20)

Tree as pl anned.

/-(10)

indicates a selection of observations
SYM A- (#TEMAOO1: 1 fl ag=0035)
/-0BJ----|--SYMV-(l.Sex:2 flag=0001)

narme), |.sex, r.age
on |.LindxNanme = r.nane;

Use RIGHT JOIN Phrase!

icates a selection of observation

| (3) \- SYM V- (r. Age: 3 flag=0001) L.Name and
/-OTRI- - - | L.LindxName are
| (2) /-SYM V- (1. Ll ndxName: 7 fl ag=0001) passed up, used &
//\\ /-OBI----| (25) dropped after
JTAG | (15) |--SYMV-(l.nane:1 flag=0001) coalesce & CEQ
| | if ends in | \-SYM V- (I.Sex:2 flag=0001)
| | 1= left join, /- SORT- - - |
| | 2=right join | (11) | /-SYM V- (I.LIndxNane: 7 flag= 1)
| | 3=full join | | [-OBJ----] (34)
| | | | (26) |--SYMV-(l.nane:1 flag=0001)
| | | | \-SYM V- (I.Sex:2 flag=0001)
| T | |--SRC----|
| | | | (16) \-TABL[WORK] . | eft _cl ass opt=""
| | | | -- enpty- (27)
| | | | (17) /- SYM V- (I . LI ndxNane: 7)
Merge join l l [-ASC---| (35) r.name is
| \-ORDR---| (28)
fizs FROM - - | (18) passed up, used
gg‘lit'on of | /-SYMV-(r.name: 1 flag=0001) & dropped after
Or OTRJ | [-0BJ----| (29) coalesce & CEQ
| | (19) \-SYM V- (r. Age: 3 flag=0001)
Merg joins \- SORT- --|
can be used (12) | /-SYM V- (r.nanme: 1 flag=000
for inner | [-0B8)----| (36)
e | | (30) \-SYM V- (r. Age: 3 flag=0001)
!o!n or outer |--SRC----|
loins | (20) \-TABL[WCRK].right class opt=""
T T | -- enpty- (31)
| | | (21) /- SYM V- (r.nane: 1)
| | | 1-ASC----| (37)
| | \-ORDR---| (32)
| | --enpty- (22)
L5 /- SYM V- (1. LI ndxNarre: 7) equality check info passed up
JTAG: ifendsin \--CEQ---| (13)
1= left join, (6) \-SYM V- (r.nane: 1)
2=right join -(7)JTAGj ds=2, tagfrome2, flags=0) A
Sl il - enpty- | - SYM A- (#TEMAOO1: 1 f | ag=0031) |
(8) /- ASGN---| (23) Coalesced Var.
| | | (14) | /- SYM V- (] .nane: 1)
| | | \-FCOA---] (33)
(1) | | | (24) \-SYM V- (r.nane: 1)
- - SSEL----| \- (9) OBIE-|
Appendix — SQL Method and Tree Page 49 of 57

SUGI 30

Proc SQL _nethod _tree;
create table hope as

From left_class as |
Sgxcrta

Sqxj m
Sgxsort (11) this indicates a SORT

sgxsrc(WORK. LEFT_CLASS(al i as=L))

sgxsort (12) this indicates a SORT

sgxsr c(WORK. RI GHT_CLASS(al i as=R)

Tree as pl anned.

sel ect coal esce(|

right join right_class as r
(1) this indicates a selection of observations
(2) this indicates a sort-nerge type of join

/- SYM A- (#TEMAOO1: 1 fl ag=0035)

Data Warehousing, Management and Quality

title "EX20C Illustrating a right join with index on RIGHT table" ;

.name, r.nane), |.sex, r.age

on |.nanme = r. Rl ndxNane; Use RIGHT JOIN

Phrase!

(16) indicates a selection of observations

indicates a selection of observations

) (20)

/-0BJ----| (10)
| (3) | --SYM V- (I.Sex: 2 flag=0001)
| \-SYM V- (r.Age:3 flag=0001)
/-QTRI- - -| L.Name is
| (2) | /-SYM V- (I .name: 1 fl ag=0001) passed up, used
l [-0B----] (29 & dropped after
JTAG | (15) \- SYM V- (1. Sex: 2 flag=0001) pp
) ! /- SORT- - - | coalesce & CEQ
if ends in
1= left join, | (11) | /-SYM V- (Il .nane: 1 flag=0001
2=right join | | /-0BJ----| (34)
3=full join | | | (26) \- SYM V- (1. Sex: 2 flag=0001)
| [--SRG---|
| | (16) \- TABL[WORK] . | ef t _cl ass opt=""
| | -- enpty- (27)
| | | | (17) /- SYM V- (I . nane: 1) r.name and
: ' | | 1-ASC ---| (35) R.RindxNam
r:;ij: i.:fhas l ‘- ool (28) e are passed
JOIN - FROM - - | (18) up, used &
T ERTRS (4) | /- SYM V- (r. Rl ndxName: 7 fl ag=0001) el
| /-0BI----] (29) ﬂpp
Merg joins can | | (19) |--SYMV-(r.name:1 flag=0001) Sy
be used for I [\-SYM V- (r.Age: 3 flag=0001) coalesce.
inner join or \ - SORT- - - | &CEQ
outer joins (12) | /-SYM V- (r. R ndxNane: 7 fl ag=)
| /-0BJ----| (36)
| | | | (30) | --SYM V-(r.nane: 1 flag=0001)
| | | | \-SYM V- (r.Age: 3 fl ag=0001)
| | [--SRGC---|
| | | (20) \ - TABL[WORK] . ri ght _cl ass opt=""
| | | -- enpty- (31)
| | | (21) /- SYM V- (r. Rl ndxNarre: 7)
| | | [-ASC ---| (37)
| | \-ORDR---| (32)
| | --enpty- (22)
I (9 /-SYM V- (1. nare: 1) equality check info passed up
JTAG: i --CEQ---] (13)
ends in (6) \ - SYM V- (r. R ndxNane: 7)
lf i fremin, -(7)ITAQj ds=2, pragfrom2—ags=6Y |
gz;ﬁ:‘_‘oﬁ'” -- enpty- /- SYM A- (#TEMAOO1: 1 f1 ag=0031)
S (8) [-ASGN--] (23) Coalesced Var.
| | (14) | /- SYM V- (1. nane: 1)
| | \-FCOA---] (33)
| | (24) \ - SYM V- (r. nane: 1)
(1) | \ - OBJE---|
-~ SSEL---| (9)
Appendix — SQL Method and Tree Page 50 of 57

SUGI 30 Data Warehousing, Management and Qualit

Proc SQL _nethod _tree; title "EX20D Illustrating a right join witn index on BOTH tabl es"”
create table hope as sel ect coal esce(|.name, r.nanme), |.sex, r.age
Fromleft_class as | right join right_class as r on |.LindxNane = r.RI ndxNane;

Use RIGHT

Sgxcrta (1) this indicates a selection of observations
JOIN Phrase!

Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observations
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

Tree as pl anned. /- SYM A- (#TEMAOO1: 1 f1 ag=0035)
/-0BJ----| (10)
| (3) | --SYM V- (1. Sex: 2 flag=0001)
| \- SYM V- (r. Age: 3 flag=0001) -
/-OTRI---| L.Name is
| (2) | /-SYM V- (I . LI ndxName: 7 flag=0001) passed up, used
| | [-0BJ----] (25)
| (15) |--SYMV-(l.nanme:1 flag=0001) & dropped after
JTAG | \-SYM V- (1. Sex: 2 flag=0001) coalesce & CEQ
if ends in / - SORT- - - |
1= left join, | (11) | /-SYM V- (| . LI ndxNane: 7 flag=0001)
2=right join | | /-0BJ----| (35)
3=full join | | | (26) | --SYM V- (I .name: 1 flag=0001)
| | | \-SYMV - (I.Sex: 2 flag=0001)
| |--SRC---]
| | (16) \- TABL[WORK] . | eft _cl ass opt=""
T T | | -- enpty- (27)
| | | | (17) /- SYM V- (I . LI ndxName: 7)
| | | | /-ASC----] (36)
Merge join | \-ORDR---] - (28)
has notation FROM - - | (18)
o (4) | /- SYM V- (r. R ndxName: 7 | ag=0001)
JOIN | /-OBI----| (29) -)
o TR | | (19) |--SYMV-(r.nanme:1 flag=0001)
| | \-SYM V- (r.Age: 3 flag=0001)
M . \ - SORT---| (30)
S [T 2 /-SYM V- (r. Rl ndxName: 7 flag=0001)
can be used (12) | (r. : 9=
ot e | [-OBI----| (37)
or inner join
oy | | (31) |--SYMV-(r.name:1 flag=0001)
or outer joins
| | \-SYM V- (r. Age: 3 flag=0001)
|--SRC---]
| (20) \ - TABL[WORK] . ri ght _class opt=""
| -- enpty- (32)
T T | (21) /- SYM V- (r. Rl ndxNane: 7)
| | | /-ASC----| (38)
| | \-ORDR- - -| (33)
| | --enpty- (22)
— | (5 /- SYM V- (I . LI ndxNane: 7)]]
JTAG:ifends \| o | (13 equality check info passed up
. ﬁ"_‘) (6) \- SYM V- (1. R ndxName: 7)
B .e J(_J".L --JTAQ jds=2, tagfrome2, flags=0)
2=right join (7 A
Sl el |--enpty- I} SYM A- (#TEMAOO1: 1 f1 ag=0031) |
I (8 - ASGN---| [(23) Coalesced Var.
| | | (14) | /-SYM V- (1. nane: 1)
| | | \ { FCOA- - - | (34)
| | | (24) \-SYM V- (r.nane: 1)
| \-OBJE---|
--SSEL---| (9)
(D

NOTE: Tabl e WORK. HOPE created, with 27360000 rows and 3 col unms.

Appendix — SQL Method and Tree Page 51 of 57

SUGI 30

*****exan«pl e 21 * Kk ok Kk Kk FULL JO N IR EEE SRS EEEEEEEEEE]
Proc SQL _nethod _tree;
create table hope as

Fromleft_class as |
Sgxcrta
Sgxjm (2) this indicates a sort-nerge type of
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16)
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20)
Tree as pl anned. /- SYM A- (#TEMAOO1: 1

sel ect coal esce(| . nane,

full join right_class as r

(1) this indicates a selection of observations

indicates a selection of observations

Data Warehousing, Management and Quality

title "EX21A Illustrating a full
r.nane),

join with no indexes" ;
| .sex, r.age
| . nanme r.name;

on

Use FULL
JOIN Phrase!

join

indicates a selection of observations

f1 ag=0035)

/-CBJ----| (10)
| (3) | --SYM V- (1. Sex: 2 flag=0001)
| \-SYM V- (r.Age: 3 flag=0001)
/- OTRI---|
| (2) | /-SYM V- (Il.nane:1 flag=0001) -
| | [-CBI----| (25) L.Name is
-J/ \ | (15) \-SYMV-(I.Sex:2 flag=0001) passed up,
JTAG /- SORT- - - | used &
e i (1) | /-SYM V- (1. nane: 1 flag=0001) { dropped
2=right o | | /-OB)--—-| (35) e
3=tull join | | | (26) \- SYM V- (1. Sex: 2 flag=0001) coalesce
| | --SRC----| &CEQ
| | (16) \-TABL[WORK] . | eft _cl ass opt=""
| | --enpty- (27)
T | | (17) /- SYM V- (I.nane: 1)
Merge join | | [-ASC---| (36)
has notation | \ - ORDR- - - | (28)
of ROM: - - | (18)
JOIN) | /-SYM V- (r.name:1 flag=0001)
Or OTRJ | /-OBJ----| (29)
Merg joins | | (19) \- SYM V- (r. Age: 3 flag=0001)
\ - SORT- - - | (30)
can be used
for inner join (12) | /-SYMV-(r.name:1 flag=0001)
or outer | /-0BJ----| (37)
joins [| (31) \-SYM V- (r. Age: 3 flag=0001)
[--SRG---|
| (20) \ - TABL[WORK] . ri ght _cl ass opt=""
T | -- enpty- (32)
| | | (21) /- SYM V- (r.nane: 1)
| | | [-ASC----] (38)
| | \- ORDR- - - | (33)
| | --enpty- (22)
(5) [-SYMV- (1. nare: 1) equality check info passed up
JTAG: ifends Y-CEQ---| (13)
in (6) \ - SYM V- (r.name: 1)
1= left join, JTAG(j ds=3, tagfrone3, flags=0)
2=righ.t j‘oin (7)
s=full join [~ enpty- /- SYM A- (#TEMAOOL: 1 f| ag=0031)
I (8) [-ASGN--4| (23)
| [(14 || /- SYM V- (I . nane: 1) Closlizeiose Vel
| | \-FCOA---| (34)
| | | (24) \ - SYM V- (r. nane: 1)
- (1) - SSEL| \ (9) OBJE- |
Appendix — SQL Method and Tree Page 52 of 57

SUGI 30

Proc SQL _nethod _tree;
create table hope as

From | eft_cl ass
Sgxcrta

Sgxj m

Sgxsort

sgxsr c(WORK.

sqgxsort

sgxsr c(WORK.

(2) this i

Tree as pl anned.

|

|

/- OTRI- - - |
| (2) |
| |

JTAG
if ends in
1= left join,
2=right join
3=full join

(1) this indicates a selection of observations

(11) this indicates a SORT

Merge join
has notation
of

JOIN

Or OTRJ

Merg joins
can be used
for inner join
or outer
joins

JTAG: if
ends in
1= left join,
2=right join

R=f11ll inin

(1)

|
|
|
-~ SSEL---|

Appendix — SQL Method and Tree

Data Warehousing, Management and Quality

title "EX21B Il lustrating a full
sel ect coal esce(|.nane, r.nane),
as | full join right_class as r on

join witn index on left tabl
| .sex, r.age
|. Li ndxNane

r.name, Use FULL

JOIN Phrase!

ndi cates a sort-nerge type of join

LEFT_CLASS(al ias=L)) (16) indicates a selection of observations

(12) this indicates a SORT

RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

/- SYM A- (#TEMAOO1: 1 f| ag=0035)

/-0BJ----] (10)
(3) | --SYM V- (I.Sex:2 flag=0001)
\-SYM V- (r.Age: 3 flag=0001)
/-SYM V- (I.LIndxNane: 7 flag=0001)
/[-0BJ----] (23)
| (15) |--SYM V- (I.nane:1 flag=0001)
| \-SYMV-(I.Sex:2 flag=0001)
/- SORT- - - |
| (11) | /- SYM V- (I.LIndxName: 7 flag=0001)
| | [-0BJ----] (33)
| | | (24) |--SYM V- (I.nane:1 flag=0001)
| | | \-SYM V- (I.Sex:2 flag=0001)
| | --SRC----|
| | (16) \- TABL[WORK] . | ef t _cl ass opt=""
| |-- enpty- (25)
| | (17) /- SYM V- (I . LI ndxNane: 7)
| | [-ASC----] (34)
| \-ORDR---| (26)
- - FROM - - | (18)
(4) | /-SYM V- (r.name: 1 flag=0001)
| /-0BJ----] (27)
| | (19) \-SYM V- (r. Age: 3 flag=0001)
\ - SORT- - - |
(12) | /-SYM V- (r.nane: 1 flag=0001)
! /-0BJ----| (35)
| | (28) \-SYM V- (r. Age: 3 flag=0001)
|--SRC-- -
| (20) \ - TABL[WORK] . ri ght _cl ass opt=""
| -- enpty- (29)
| (21) /- SYM V- (r.nane: 1)
--enpty- | [-ASC---] (36)
(5) \-ORDR---| (30)
/- SYM V- (1. LI ndxNane: 7)
- CEQ---| (13) equality check info passed up
(6) \ - SYM V- (r. name: 1)
--JTAQj ds=3, tagfrome3, flags=0)
(7
-- enpty- /- SYM A- (#TEMAOO1: 1 f1 ag=0031)
(8) /-ASGN--| (21)
| (14) || /- SYM V- (1. name: 1) Coalesced Var.
| \-FCOA---| (31)
- OBJE(9) - | (22) \-SYM V- (r. nane: 1)

Page 53 of 57

SUGI 30 Data Warehousing, Management and Quality

Proc SQL _nethod _tree; Title "EX21C Illustrating a full join w index on R GHT table" ;
create table hope as select coal esce(l.name, r.name), |.sex, r.age
Fromleft_class as | full join right_class as r on |.nane = r. Rl ndxNang;
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observations
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

Tree as pl anned. /- SYM A- (#TEMAOO1: 1 fl ag=0035)
/-0BJ----] (10)
| (3) | --SYM V- (I.Sex:2 flag=0001)
| \-SYM V- (r. Age: 3 fl ag=0001)
/-OTRJ- - - |
(2) | /-SYMV-(l.name:1 flag=0001)
/-0BJ----] (25)
| (15) \-SYM V- (I.Sex:2 flag=0001)
/- SORT- - - |
| (11) | /-SYMV-(l.nane: 1 flag=0001)

[-OBI----| (34)

N :
ote sorting | (26) \-SYMV-(l.Sex:2 flag=0001)

|
| (16) \-TABL[WORK] . | eft _cl ass opt=""
| -- enpty- (27)
| | | | (17) /-SYMV - (I .nane: 1)
| | | | /-ASC----] (35)
| | | \-ORDR---| (28)
| | - - FROM - - | (18)
| | (4) | /- SYM V- (r. R ndxName: 7 flag=0001)
| | | /-0BJ----] (29)
| | | | (19) |--SYMV-(r.nane: 1 flag=0001)
| | | | \-SYM V- (r.Age: 3 flag=0001)
| | \ - SORT- - - |
| | (12) | /-SYM V- (r. R ndxNare: 7 flag=0001)
| | | /-0BJ----] (36)
| | | | (30) |--SYMV-(r.nane: 1 flag=0001)
| | | | \-SYM V- (r.Age: 3 flag=0001)
| | [--SRC---|
| | | (20) \ - TABL[WORK] . ri ght _cl ass opt=""
| | |-- enpty- (31)
| | | (21) /- SYM V- (r. Rl ndxNane: 7)
| | | /-ASC---| (37)
| | \-ORDR---| (32)
| | --enpty- (22)
| (5) /- SYM V- (I.name: 1) lit heck inf d
[Ty CLCEQ---| (13) equality check info passed up
ends in (6) \ - SYM V- (r. R ndxNane: 7)
1= left join JTAQj ds=3, tagfrome3, flags=0)
2=right join) /I
2—=fill inin --enpty- /- SYM A- (#TEMAOO1: 1 fl ag=0031) Coalesced Var.
(8) /-ASGN---|| (23)
| | (14) | /-SYM V- (] .nane: 1)
| | \ - FCOA- - - | (33)
(1) | \-OBJE---| (24) \-SYM V- (r.nane: 1)
- - SSEL-| (9)

Appendix — SQL Method and Tree Page 54 of 57

SUGI 30 Data Warehousing, Management and Qualit

Proc SQL _nethod _tree; title "EX21D Illustrating a full join w index on BOTH tabl es" ;
create table hope as sel ect coal esce(|.nanme, r.nane), |.sex, r.age
Fromleft_class as | full join right_class as r on |.LindxNanme = r. Rl ndxNane;
Sgxcrta (1) this indicates a selection of observations
Sgxjm (2) this indicates a sort-nerge type of join
Sgxsort (11) this indicates a SORT
sgxsrc(WORK. LEFT_CLASS(al i as=L)) (16) indicates a selection of observations
sgxsort (12) this indicates a SORT
sgxsrc(WORK. RI GHT_CLASS(al i as=R)) (20) indicates a selection of observations

Use FULL
JOIN Phrase!

Tree as pl anned. /- SYM A- (#TEMAOOL: 1 fl ag=0035)
/-0BJ----| (10)
| (3) | --SYM V- (1. Sex: 2 flag=0001)
| \-SYM V- (r.Age: 3 flag=0001)
/- OTRI- - - |
| (2 | /-SYM V- (I . LI ndxNane: 7 flag=0001)
| | [-0BJ----] (24)
| (15) |--SYMV-(l.name:1 flag=0001)
JTAG | \-SYM V- (I.Sex:2 flag=0001)
if ends in /- SORT- - - |
1= left join, | (1) | /-SYM V- (1. Ll ndxNare: 7 flag=0001)
2=right join | | /-0BJ----| (32)
3=full join | | | (25) |--SYMV-(l.nane:1 flag=0001)
| | | \-SYM V- (I.Sex: 2 flag=0001)
I |--SRC----|
| | (16) \-TABL[WORK] . | eft _cl ass opt=""
T T I | -- enpty- (26)
| | | | (17) /-SYM V- (I . LI ndxNane: 7)
I | I | [-ASC----| (32)
[[| \-ORDR---| (27)
- FROM - - | (18)
Merge join (4) | /- SYM V- (r.RIndxNane: 7 flag=0001)
has notation | /-0BJ----| (28)
of | | (19) |--SYMV-(r.name:1 flag=0001)
JOIN | | \-SYM V- (r.Age: 3 flag=0001)
Or OTRJ \ - SORT- - - |
(12) | /-SYM V- (r. Rl ndxNare: 7 flag=0001)
Merg joins | /-0BJ----| (33)
can be used | | (29) | --SYM V- (r.nane:1 flag=0001)
for inner join | | \-SYMV -(r.Age: 3 flag=0001)
or outer joins |--SRC----|
| (20) \ - TABL[WORK] . ri ght _class opt=""
| -- enpty- (30)
| (21) /- SYM V- (r. Rl ndxNane: 7)
| /-ASC----| (33)
I | \-ORDR- - - |
I | --enpty- (22)
| (5) /- SYM V- (1. LI ndxNare: 7)
JTAG: if --CEQ---| (13) : :
onds in (6) \-SYM V- (r. R ndxName: 7) equality check info passed up
1= left join, - JTAQj ds=3, tagfron¥3, flags=0)
2=right join (7
3=full join - enpty- /- SYM A- (#TEMAOO1: 1 fl ag=0031)
(8) [-ASGN---|| (22)
I | [4 |l /-SYM V- (I . nane: 1) Coalesced Var.
I | I \-FCOA---| (31)
| | | (23) \ - SYM V- (1. nane: 1)
| \ - OBJE- - - |
-~ SSEL---| (9)
(1)

Appendix — SQL Method and Tree Page 55 of 57

SUGI 30

*xxxxxxExanpl e 22 *** CORRELATED QUERY
* showi ng how CORREALTED QUERY is processed ;

proc sqL _METHOD _TREE; TITLE "EX25 A SI MPLE CORRELATED QUERY";

select * from sashel p.class as Quter

kK kKK

Data Warehousing, Management and Qualit

Simple Correlated Query

Wiere Quter.AGE = (select Max(age) from sashel p.class as inner where outer>sgx=inner.sex);

NOTE: SQL execution nethods chosen are:
Sgxslct (1) this indicates a selection of observations

sgxsrc(SASHELP. CLASS(al i as

QUTER))

NOTE: SQL subquery execution nethods chosen are:

Sgxsubg (1) this indicates a selection of observations

(20)

indicates a selection of observations

Subquery

sqxsurm (6) this indicates summation w thout grouping-a summary of the whole table

indicates a selection of observations

Select * from outer subject to the
condition that outer.age = the max age
for that sex.

sqxsrc(SASHELP. CLASS(alias = INNER)) (20)
Tree as pl anned. /-SYMV-(Quter.Nare: 1 flag=0001)
/-0BJ----1 (6)
| (3) | --SYM V- (CQuter. Sex: 2 flag=0001)
| | --SYM V- (Quter.Age: 3 flag=0001)
| | --SYM V- (Quter. Hei ght:4 flag=0001)
|

[-FlL----]
I (2 |

N /-0BJ----|
7
Fil)

application
of a - SRG----
predicate (

I
. I
is the late |
I
I

(8)

-CEQ---1 (9)
(5) I

Subquery causes
the creation of a
temp, indexed
table

SUBC is
short for
SUBroutine
Call.
Printed out
--ssEL---| | @S@

(1) summary of
the process

\ - SUBC-
(10)

I
I
I
I
I
I
I
I
I
I
I
I
| —_—
I
I
I
I
I
I
I
I
I
I
I
I

\-SYM V- (CQuter

/- SYMV-(Quter.

(11)

|--SYM V- (Quter.
|--SYMV-(CQuter.
|--SYMV-(CQuter.
\-SYM V- (CQuter.

4) \- TABL[SASHELP] . ¢l ass opt ="

/- SYM V- (Quter. Age: 3)

Age: 3 flag=0001)

Wi ght:5 flag=0001)

Pass to FIL

Sex: 2 flag=0001)
Nare: 1 f1ag=0001)
Hei ght : 4 f1ag=0001) -
Vi ght: 5 1 ag=0001) Get this from sashelp.class

Outer.age is part of outer query & used in the equality check

/- AGER - - |

(12)

(13)

/- SYM G (#FTEMZ001: 1 stat=5,0 from e(.o fag0oos)
[-OBJ----| (19)
(14)
/-SYMV - (inner.Age: 3 flag=0001)
/-0BJ----| (25)
|--SRC----] (20) _
(15) | -- TABL[SASHELP] . cl ass opt="" SUBP: stands for
|-- enpty- subroutine parameter
| (21) /- SUBP(1)
\-CEQ---] (26)
(22) \ - NAME- - (Sex: 2)
|-- enpty- (27)
|-- enpty-
|-- empty- Create a variable, using Grouping (SYM-G),
: gg: z containing the max age (stat function=5)
|-- enpty-
(16) /- SYM G- (#TEMEDO01: 1 stat=5,0 from age(o,0)
[--TLST---| (23)
(17) /- SYM S- (Age: 2 s5=0008x)
\-SLST---| (24)
(18) Pretend that what is inside the paren, in the
\-SYM V- (auter. Sex:2) 4 query, is a function and we are passing , to the
function, a paramater- we pass outer.sex from
the outer query to the function.

Appendix — SQL Method and Tree

Page 56 of 57

SUGI 30

Data Warehousing, Management and Quality

*xxkxxxExanpl e 23 *** cal cul at ed

* Kk kkk k-
,

15 proc sql _nethod _tree;

16 sel ect name, age*12 as age_no

17 from sashel p. cl ass

18 where cal cul ated age_no LE 144;

NOTE: SQL execution nethods chosen are:

sgxsl ct
saxfil
sgxsrc(SASHELP. CLASS)

Tree as pl anned.
/-SYM V- (class. Nare: 1 flag=0001)
[-CBJ----] (6)
| (3) \ - SYM A- (age_no: 1 flag=0031)

/-0BI----| (11)
I (7

- SSEL---
(1)

(6)

"ERLY" is short for "early list."

/-SYM V- (class. Age: 3 flag=0001)

\-SYM V- (class. Nane: 1 flag=0001)

I

I |

I |

I |--SRC----|

| | (4) \ - TABL[SASHELP] . cl ass opt=""

| | /-SYM A-(age_no: 1 flag=0070)

I |--CLE----] (8)

| | (5) \- LI TN(144)

I | --enpty- (9)

I | --enpty-

| | /-SYMA-(age_no: 1 flag=0070)
| | /- ASGN- - - | (12)

| | | (10) | /- SYM V- (cl ass. Age: 3)
I | I \-AMUL- - - | (14)

| | | (13) \-LITN(12)

| \- ERLY---|

I

Call FIL subroutine in SQL (2)
because the variable age_mo was
not available to the data engine.
It must be created by SQL and
then logic can be applied.

It contains a list of expressions that must be evaluated before any other expressions on a step.

On that list the first one must be evaluated before the second one (if any), the second one must be

evaluated before the third one (if any), etc.

For example, "age_mo" must be calculated (it's on the early list) BEFORE its value can be referenced in

the "age_mo <= 144" expression.

Appendix — SQL Method and Tree Page 57 of 57

	SUGI 30 Proceedings Table of Contents

