SAS® GLOBAL FORUM 2019

USERS PROGRAM

APRIL 28 - MAY 1, 2019 | DALLAS, TX

Regularization Techniques for Multicollinearity: Lasso, Ridge, and Elastic Nets

Deanna (DeDe) N Schreiber-Gregory

Henry M Jackson Foundation for the Advancement of Military Medicine

USERS PROGRAM

Presenter

Deanna N Schreiber-Gregory, Data Analyst II / Research Associate, Henry M Jackson Foundation for the Advancement of Military Medicine

Deanna is a Data Analyst and Research Associate through the Henry M Jackson Foundation. She is currently contracted to USUHS and Walter Reed National Military Medical Center in Bethesda, MD. Deanna has an MS in Health and Life Science Analytics, a BS in Statistics, and a BS in Psychology. Deanna has presented as a contributed and invited speaker at over 40 local, regional, national, and global SAS user group conferences since 2011.

@DN_SchGregory

Overview

- ➤ Definition of Multicollinearity
- ➤ The Dataset
- ➤ Detecting Multicollinearity
- ➤ Combating Multicollinearity
 - LASSO Regression
 - Ridge Regression
 - Elastic Net

Defining Multicollinearity

What is Multicollinearity?

> Definition

A statistical phenomenon wherein there exists a perfect or exact relationship between predictor variables

> From a conventional standpoint:

- Predictors are highly correlated
- Predictors are co-dependent

➤ Notes

- When things are related, we say they are linearly dependent
 - > Fit well into a straight regression line that passes through many data points
- Multicollinearity makes it difficult to come up with reliable estimates of individual coefficients for the predictor variables
 - Results in incorrect conclusions about the relationship between outcome and predictor variables

The Dataset

The Dataset

➤ The dataset: SAS Sample Data

```
libname health "C:\Program
Files\SASHome\SASEnterpriseGuide\7.1\Sample\Data";
data health;
    set health.lipid;
run;

proc contents data=health;
    title 'Health Dataset with High Multicollinearity';
run;
```

The Dataset

➤ The Example

- Outcome: Cholesterol loss between baseline and check-up
- Predictors (Baseline): Age, Weight, Cholesterol, Triglycerides, HDL, LDL, Height

Ways to Detect Multicollinearity

- There are three ways to detect multicollinearity
 - Examination of the correlation matrix
 - Variance Inflation Factor (VIF)
 - Eigensystem Analysis of Correlation Matrix

Examination of the Correlation Matrix

- Examination of the Correlation Matrix
 - Large correlation coefficients in the correlation matrix of predictor variables indicate multicollinearity
 - If there is multicollinearity between any two predictor variables, then the correlation coefficient between those two variables will be near to unity
- Proc Corr

Variance Inflation Factor / Tolerance

Variance Inflation Factor

- The Variance Inflation Factor (VIF) quantifies the severity of multicollinearity in an ordinary least-squares regression analysis
- The VIF is an index which measures how much variance of an estimated regression coefficient is increased because of multicollinearity
- Note: If any of the VIF values exceeds 5 or 10 it implies that the associated regression coefficients are poorly estimated because of multicollinearity

Tolerance

Represented by 1/VIF

Eigensystem Analysis of Correlation Matrix

- Eigensystem Analysis of Correlation Matrix
 - The eigenvalues can also be used to measure the presence of multicollinearity
 - If multicollinearity is present in the predictor variables one or more of the eigenvalues will be small (near to zero)
 - Note: if one or more of the eigenvalues are small (close to zero) and a corresponding condition number is large, then it indicates multicollinearity

Test: Examination of the Correlation Matrix

```
/* Assess Pairwise Correlations of Continuous Variables */
proc corr data=health;
var age weight cholesterol triglycerides hdl ldl height; run;
```

	Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations											
	Age	Weight	Cholesterol	Triglycerides	HDL	LDL	Height	CholesterolLoss				
Age	1.00000 95	0.08935 0.3892 95	0.26282 0.0101 95	0.21167 0.0395 95	0.20310 0.0484 95	0.21588 0.0356 95	-0.02080 0.8414 95	0.09914 0.5270 43				
Weight	0.08935 0.3892 95	1.00000 95	-0.02188 0.8333 95	0.10757 0.2994 95	-0.27555 0.0069 95	0.05743 0.5804 95	0.69794 <.0001 95	-0.24221 0.1176 43				
Cholesterol	0.26282 0.0101 95	-0.02188 0.8333 95	1.00000 95	0.40081 <.0001 95	0.35246 0.0005 95	0.96170 <.0001 95	-0.07521 0.4688 95	0.40318 0.0073 43				
Triglycerides	0.21167 0.0395 95	0.10757 0.2994 95	0.40081 <.0001 95	1.00000 95	-0.27838 0.0063 95	0.48904 <.0001 95	0.04071 0.6953 95	0.11396 0.4669 43				
HDL	0.20310 0.0484 95	-0.27555 0.0069 95	0.35246 0.0005 95	-0.27838 0.0063 95	1.00000 95	0.08340 0.4217 95	-0.24465 0.0169 95	0.19099 0.2199 43				
LDL	0.21588 0.0356 95	0.05743 0.5804 95	0.96170 <.0001 95	0.48904 <.0001 95	0.08340 0.4217 95	1.00000 95	-0.00777 0.9404 95	0.37389 0.0135 43				
Height	-0.02080 0.8414 95	0.69794 <.0001 95	-0.07521 0.4688 95	0.04071 0.6953 95	-0.24465 0.0169 95	-0.00777 0.9404 95	1.00000 95	-0.27042 0.0795 43				
CholesterolLoss	0.09914 0.5270 43	-0.24221 0.1176 43	0.40318 0.0073 43	0.11396 0.4669 43	0.19099 0.2199 43	0.37389 0.0135 43	-0.27042 0.0795 43	1.00000				

• Tests:

- Variance Inflation Factor
- Eigensystem Analysis of Correlation Matrix

```
/* Multicollinearity Investigation of VIF and Tolerance */
proc reg data=health;
  model cholesterolloss = age weight cholesterol triglycerides hdl
    ldl height / vif tol collin;
run;
```

Note:

- Common cut point for VIF = 10 (higher indicates multicollinearity)
- Common cut point for Tol = .1 (lower indicates multicollinearity)

• Note: VIF cut point = 10, Tolerance cut point = 0.1

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation			
Intercept	1	18.38590	86.45275	0.21	0.8328	-	0			
Age	1	0.63264	1.68351	0.38	0.7093	0.51425	1.94457			
Weight	1	-0.29825	0.24873	-1.20	0.2385	0.37514	2.66571			
Cholesterol	1	-169.20149	157.59569	-1.07	0.2903	4.663583E-7	2144274			
Triglycerides	1	2.67536	2.51627	1.06	0.2950	0.00037770	2647.57331			
HDL	1	169.19195	157.46718	1.07	0.2900	0.00000556	179909			
LDL	1	169.52519	157.59200	1.08	0.2894	5.511058E-7	1814534			
Height	1	-0.26426	1.45480	-0.18	0.8569	0.49108	2.03634			

Example

• Eigensystem Analysis of Covariance: If one or more of the eigenvalues are small (close to zero) and the corresponding condition number is large, then it indicates multicollinearity

	Collinearity Diagnostics											
		Condition		Proportion of Variation								
Number		Index	Intercept	Age	Weight	Cholesterol	Triglycerides	HDL	LDL	Height		
1	7.57480	1.00000	0.00003622	0.00016237	0.00015525	2.87683E-10	0.00000165	5.04002E-9	4.85942E-10	0.00002624		
2	0.31551	4.89979	0.00014232	0.00018194	0.00043972	3.21062E-11	0.00033484	1.082107E-7	2.794E-10	0.00010102		
3	0.05782	11.44595	0.00178	0.00184	0.05104	4.361274E-8	1.141859E-7	0.00000124	6.388516E-8	0.00275		
4	0.03337	15.06626	0.00044517	0.01226	0.01308	5.377563E-8	0.00025542	0.00000323	3.193503E-7	0.00016967		
5	0.01055	26.79431	0.06288	0.31489	0.12880	2.36137E-15	0.00001378	8.595756E-8	6.73401E-10	0.02608		
6	0.00695	33.01681	0.02236	0.61435	0.40629	2.946854E-9	0.00023471	0.00000642	2.086847E-8	0.00031216		
7	0.00100	86.86528	0.84879	0.02428	0.28558	5.400146E-9	0.00002137	1.778525E-7	2.419023E-8	0.85275		
8	1.018426E-8	27272	0.06358	0.03202	0.11462	1.00000	0.99914	0.99999	1.00000	0.11780		

Overview

Combating Multicollinearity What Can We Do?

- Easiest
 - Drop one or several predictor variables in order to lessen the multicollinearity
- If none of the predictor variables can be dropped, alternative methods of estimation need to be employed:
 - Principal Component Regression
 - Regularization Techniques
 - L1: Lasso Regression
 - L2: Ridge Regression
 - Elastic Net

Combating Multicollinearity Principal Component Regression

• Logic:

- Every linear regression model can be restated in terms of a set of orthogonal explanatory variables
- These new variables are obtained as linear combinations of the original explanatory variables
 - Often referred to as: Principal Components
- The principal component regression approach combats multicollinearity by using less than the full set of principal components in the model

• Calculation:

- To obtain the principal components estimators
 - Assume the regressors are arranged in order of decreasing eigenvalues, $\Lambda 1 \ge \Lambda 2 \dots \ge \Lambda p > 0$
- In principal components regression, the principal components corresponding to near zero eigenvalues are removed from the analysis
 - Least squares is then applied to the remaining components

Combating Multicollinearity Regularization Methods

• Logic:

- Regularization adds a penalty to model parameters (all except intercepts) so the model generalizes the data instead of overfitting (a side effect of multicollinearity)
- Two main types:
 - L1 Lasso Regression
 - L2 Ridge Regression
- Flastic Nets

Combating Multicollinearity Regularization Methods

Ridge Regression

- Squared magnitude of the coefficient is added as penalty to loss function
- $\sum_{i=1}^{n} (Y_i \sum_{j=1}^{p} X_{ij} \beta_j)^2 + \Lambda \sum_{j=1}^{p} \beta_j^2$

Lasso Regression

- Absolute value of magnitude of the coefficient is added as penalty to loss function
- $\sum_{i=1}^{n} (Y_i \sum_{j=1}^{p} X_{ij} \beta_j)^2 + \Lambda \sum_{j=1}^{p} |\beta_j|$

• Result:

- if $\Lambda = 0$ then the equation will go back to OLS estimations
- If Λ is very large, too much weight would be added = under-fitting
- NOTE: need to be careful with choice of Λ

Combating Multicollinearity Regularization Methods

Key difference:

- Lasso Regression is meant to shrink the coefficient of the less important variables to zero
 - This works well if feature selection is the goal
 - Not necessarily good for grouped selection
- Ridge Regression adjust weights of the variables
 - Goal is not to shrink the coefficients to zero, but to adjust for representation of all relevant variables

Some Trade-Offs

- We are still dealing with an adjustment
- Naturally results in biased outcomes

Combating Multicollinearity Elastic Nets

Elastic Net

- Balances having parsimonious model
 - Borrows strength from correlated regressors
 - Constraints on sum of absolute value of magnitude of the coefficient
 - Constraints on sum of the squared coefficient

$$\sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p} X_{ij} \beta_j)^2 + \Lambda \left(\propto \sum_{j=1}^{p} |\beta_j| + (1 - \infty) \sum_{j=1}^{p} \beta_j^2 \right)$$

LASSO Regression

Combating Multicollinearity LASSO Regression Example

LASSO: Least Absolute Shrinkage and Selection Operator

- Logic
 - Constrained form of ordinary least squares regression
 - Sum of the absolute values of the regression coefficients is constrained to be smaller than a specified parameter
 - Does not punish high values of the coefficients β
 - Instead, figures out which values are irrelevant and sets them to zero
 - Results in fewer features being included in the final model

LASSO Variants

- Early implementations used quadratic programming techniques
 - LAR (Least Angle Regression)

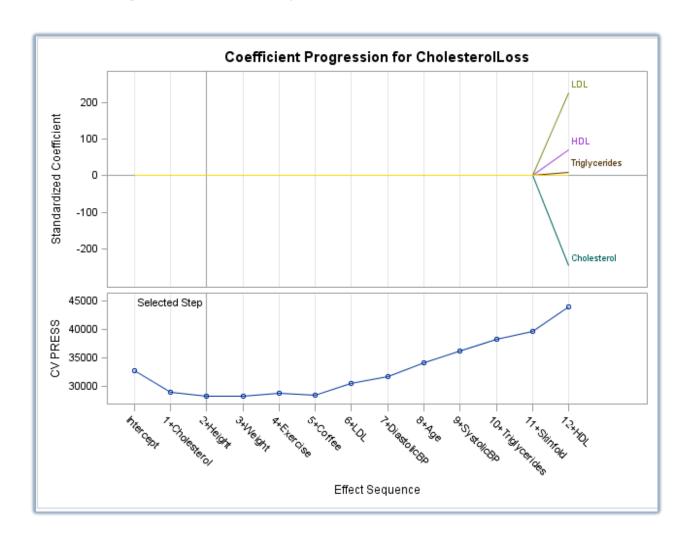
Combating Multicollinearity LASSO Regression Example

- Applying LASSO Regression
 - Can do through GLMSelect (or Proc Hpreg)
 - Specify criterion to choose among models at each step (CHOOSE =)
 - LASSO, LAR, LSCOEFFS
 - Can specify stopping criterion (STOP =)

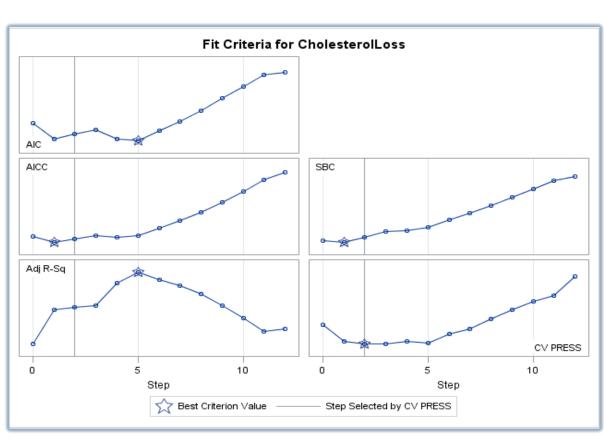
```
/* Lasso Selection */
proc glmselect data=health plots=all;
  model cholesterolloss = age weight cholesterol
  triglycerides hdlldl height skinfold systolicbp
  diastolicbp exercise coffee
    selection=lar (choose=cv stop=none) cvmethod=random(10);
  title 'Health - Lasso Regression Calculation';
run;
```

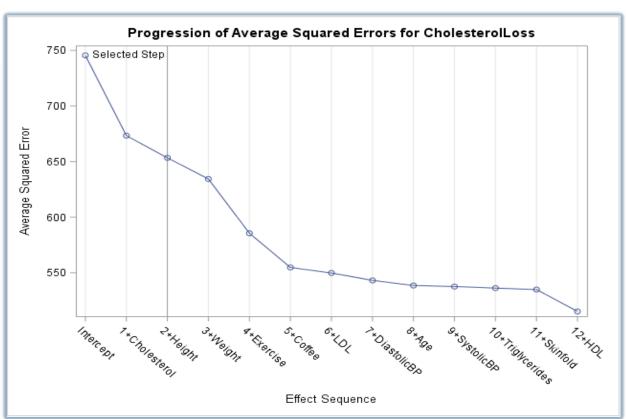
LASSO Regression Example

Н	ealth	The GLMSEL	_						
	LAR Selection Summary								
	Step Effect Number Effects In CV PRESS								
	0	Intercept	1	32892.3215					
	1	Cholesterol	2	29023.4028					
	2	Height	3	28345.4812*					
	3	Weight	4	28353.9319					
	4	Exercise	5	28918.5462					
	5	Coffee	6	28513.9674					
	6	LDL	7	30648.6581					
	7	DiastolicBP	8	31819.5480					
	8	Age	9	34142.8348					
	9	SystolicBP	10	36309.8315					
	10	Triglycerides	11	38241.8217					
	11	Skinfold	12	39651.2277					
	12	HDL	13	44039.3374					
		* Optimal Va	lue of Crite	erion					
electi	ion st	opped because a	all effects ar	e in the final mod					



LASSO Regression Example





Combating Multicollinearity LASSO Regression Example

	Anal	ysis	of Va	ıria	ince		
Source	DF	Sum o					F Value
Model	2	3963	.4196	62	1981.709	981	2.82
Error	40	2809		94	702.35637		
Corrected To	tal 42	3205		8			
	Root MS	E		2	26.50201	1	
	Depende	ependent Mean			9.76744		
	R-Square				0.1236		
	Adj R-Sq	dj R-Sq			0.0798		
	AIC		32	29.73117			
	AICC			33	30.78380		
	SBC			290.01477			
	CV PRESS				28345		
	Para	mete	er Est	im	ates		
	Parameter DF			E	stimate		
	Intercep	ot	1	-1.	.388985		
	Cholest	erol	1	0	129281		
	Height		1	-0	194803		

Ridge Regression

Ridge Regression

• Logic:

- Multicollinearity leads to small characteristic roots
 - When characteristic roots are small, the total mean square error of $\hat{\beta}$ is large which implies an imprecision in the least squares estimation method
- Ridge regression gives an alternative estimator (k) that has a smaller total mean square error value

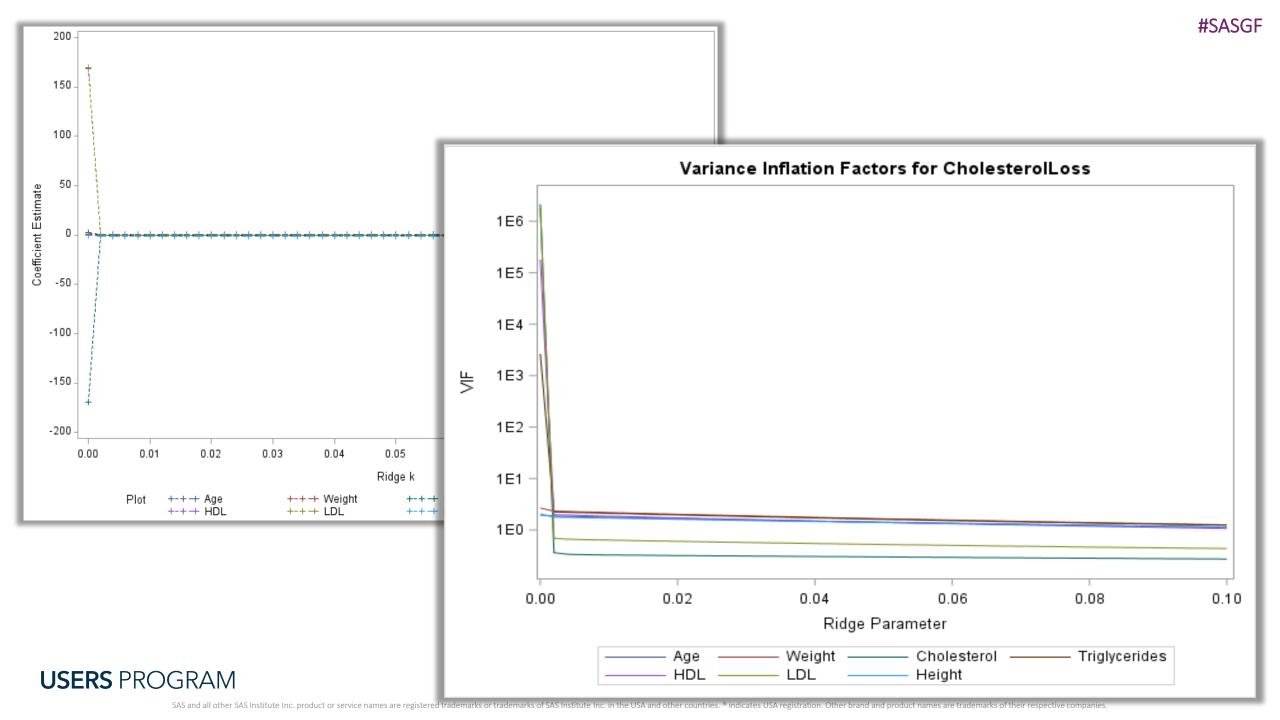
Ridge Regression

- Ridge Regression for alternative estimator
 - The value of k can be estimated by looking at a ridge trace plot
 - Ridge trace plots are plots of parameter estimates vs k where k usually lies in the interval [0,1]
 - Note:
 - Pick the smallest value of k that produces a stable estimate of β
 - Get the variance inflation factors (VIF) close to 1

Ridge Regression Example

- Applying Ridge Regression:
 - Use PROC REG procedure with RIDGE option
 - RIDGEPLOT option will give graph of ridge trace

```
/* Ridge Regression Example */
proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
  outest=rrhealth ridge=0 to 0.10 by .002;
  model cholesterolloss = age weight cholesterol
  triglycerides hdl ldl height;
  plot / ridgeplot nomodel nostat;
  title 'Health - Ridge Regression Calculation';
run;
proc print data=rrhealth;
  title 'Health - Ridge Regression Results';
run;
```



Obs	_MODEL_	_TYPE_	_DEPVAR_	_RIDGE_	_PCOMIT_	_RMSE_	Intercept	Age	Weight	Cholesterol	Triglycerides	HDL	LDL	Height	CholesterolLoss
1	MODEL1	PARMS	CholesterolLoss			26.0275	18.3859	0.63264	-0.29825	-169.20	2.68	169.19	169.53	-0.26426	-1
2	MODEL1	RIDGEVIF	CholesterolLoss	0.000				1.94457	2.66571	2144274.02	2647.57	179909.00	1814533.58	2.03634	-1
3	MODEL1	RIDGE	CholesterolLoss	0.000	-	26.0275	18.3859	0.63264	-0.29825	-169.20	2.68	169.19	169.53	-0.26426	-1
4	MODEL1	RIDGEVIF	CholesterolLoss	0.002	-	-	-	1.85746	2.32171	0.36	2.25	1.98	0.69	1.77606	-1
5	MODEL1	RIDGE	CholesterolLoss	0.002	-	26.4533	41.8777	0.30397	-0.20670	0.13	-0.03	0.00	0.20	-0.80295	-1
6	MODEL1	RIDGEVIF	CholesterolLoss	0.004	-	-	-	1.83329	2.28437	0.34	2.21	1.94	0.66	1.75614	-1
7	MODEL1	RIDGE	CholesterolLoss	0.004	-	26.4534	41.9448	0.29907	-0.20563	0.14	-0.03	-0.00	0.19	-0.80508	-1
8	MODEL1	RIDGEVIF	CholesterolLoss	0.006	-	-	-	1.80977	2.24812	0.33	2.18	1.91	0.65	1.73665	-1
9	MODEL1	RIDGE	CholesterolLoss	0.006	-	26.4535	42.0080	0.29431	-0.20460	0.14	-0.03	-0.00	0.18	-0.80713	-1
10	MODEL1	RIDGEVIF	CholesterolLoss	0.008	-	-		1.78687	2.21290	0.33	2.14	1.88	0.64	1.71759	-1
11	MODEL1	RIDGE	CholesterolLoss	0.008		26.4536	42.0680	0.28969	-0.20359	0.14	-0.03	-0.00	0.18	-0.80909	-1

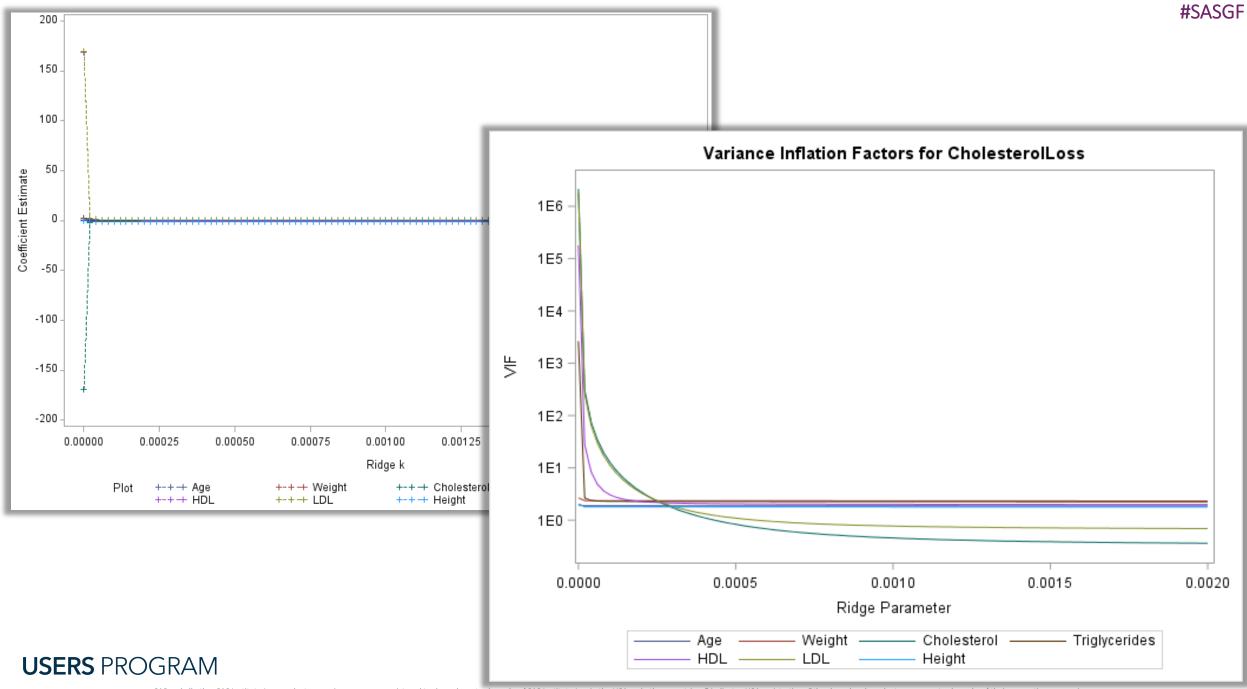
- Choose your alternative estimator
 - Pick the smallest value of k that process a stable estimate of β
 - Get the variance inflation factors (VIF) close to 1

```
proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
  outest=rrhealth_final ridge=0 to 0.002 by 0.00002;
  model cholesterolloss = age weight cholesterol triglycerides
  hdl ldl height;
  plot / ridgeplot nomodel nostat;
  title 'Health - Ridge Regression Calculation';

run;

proc print data=rrhealth_final;
  title 'Health - Ridge Regression Results';

run;
```



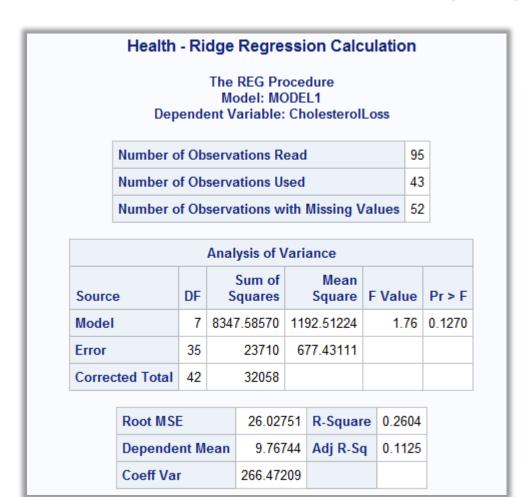
Combating Multicollinearity Ridge Regression Example

Obs	_MODEL_	_TYPE_	_DEPVAR_	_RIDGE_	_PCOMIT_	_RMSE_	Intercept	Age	Weight	Cholesterol	Triglycerides	HDL	LDL	Height	CholesterolLoss
1	MODEL1	PARMS	CholesterolLoss			26.0275	18.3859	0.63264	-0.29825	-169.20	2.68	169.19	169.53	-0.26426	-1
2	MODEL1	RIDGEVIF	CholesterolLoss	.00000		-		1.94457	2.66571	2144274.02	2647.57	179909.00	1814533.58	2.03634	-1
3	MODEL1	RIDGE	CholesterolLoss	.00000		26.0275	18.3859	0.63264	-0.29825	-169.20	2.68	169.19	169.53	-0.26426	-1
4	MODEL1	RIDGEVIF	CholesterolLoss	.00002	-	-	-	1.88207	2.35983	305.48	2.66	27.61	258.89	1.79627	-1
5	MODEL1	RIDGE	CholesterolLoss	.00002		26.4434	41.5330	0.31276	-0.20883	-1.87	0.00	2.00	2.20	-0.79445	-1
6	MODEL1	RIDGEVIF	CholesterolLoss	.00004		-	-	1.88181	2.35940	77.54	2.38	8.49	66.00	1.79604	-1
7	MODEL1	RIDGE	CholesterolLoss	.00004	-	26.4483	41.6726	0.31079	-0.20829	-0.87	-0.01	1.00	1.20	-0.79765	-1
8	MODEL1	RIDGEVIF	CholesterolLoss	.00006		-	-	1.88156	2.35901	34.78	2.32	4.90	29.82	1.79583	-1
9	MODEL1	RIDGE	CholesterolLoss	.00006		26.4500	41.7200	0.31009	-0.20809	-0.53	-0.02	0.66	0.86	-0.79874	-1
10	MODEL1	RIDGEVIF	CholesterolLoss	.00008		-	-	1.88130	2.35861	19.75	2.30	3.64	17.10	1.79562	-1
11	MODEL1	RIDGE	CholesterolLoss	.00008	-	26.4508	41.7441	0.30972	-0.20799	-0.36	-0.02	0.49	0.69	-0.79930	-1
12	MODEL1	RIDGEVIF	CholesterolLoss	.00010		-	-	1.88105	2.35822	12.77	2.30	3.05	11.20	1.79542	-1
13	MODEL1	RIDGE	CholesterolLoss	.00010	-	26.4513	41.7589	0.30947	-0.20793	-0.26	-0.02	0.39	0.59	-0.79965	-1
14	MODEL1	RIDGEVIF	CholesterolLoss	.00012		-		1.88080	2.35783	8.98	2.29	2.73	7.99	1.79521	-1
15	MODEL1	RIDGE	CholesterolLoss	.00012	-	26.4517	41.7689	0.30929	-0.20788	-0.19	-0.02	0.32	0.52	-0.79988	-1
16	MODEL1	RIDGEVIF	CholesterolLoss	.00014		-		1.88055	2.35744	6.69	2.29	2.54	6.05	1.79500	-1
17	MODEL1	RIDGE	CholesterolLoss	.00014	-	26.4519	41.7764	0.30915	-0.20784	-0.14	-0.02	0.27	0.47	-0.80006	-1

- Choose your alternative estimator
 - Pick the smallest value of k that process a stable estimate of β
 - Get the variance inflation factors (VIF) close to 1

```
proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
  outest=rrhealth_final ridge=0.00012;
  model cholesterolloss = age weight cholesterol triglycerides hdl ldl height;
  plot / ridgeplot nomodel nostat;
  title 'Health - Ridge Regression Calculation';
run;
proc print data=rrhealth_final;
  title 'Health - Ridge Regression Results';
run;
```

Obs	_MODEL_	_TYPE_	_DEPVAR_	_RIDGE_	_PCOMIT_	_RMSE_	Intercept	Age	Weight	Cholesterol	Triglycerides	HDL	LDL	Height	CholesterolLoss
1	MODEL1	PARMS	CholesterolLoss	-		26.0275	18.3859	0.63264	-0.29825	-169.201	2.67536	169.192	169.525	-0.26426	-1
2	MODEL1	RIDGEVIF	CholesterolLoss	.00012				1.88080	2.35783	8.980	2.29088	2.734	7.988	1.79521	-1
3	MODEL1	RIDGE	CholesterolLoss	.00012	-	26.4517	41.7689	0.30929	-0.20788	-0.192	-0.02197	0.321	0.520	-0.79988	-1



Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	18.38590	86.45275	0.21	0.8328				
Age	1	0.63264	1.68351	0.38	0.7093				
Weight	1	-0.29825	0.24873	-1.20	0.2385				
Cholesterol	1	-169.20149	157.59569	-1.07	0.2903				
Triglycerides	1	2.67536	2.51627	1.06	0.2950				
HDL	1	169.19195	157.46718	1.07	0.2900				
LDL	1	169.52519	157.59200	1.08	0.2894				
Height	1	-0.26426	1.45480	-0.18	0.8569				

- Modify Output for Interpretation
 - Standard errors (SEB)
 - Parameter Estimates

```
proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
  outest=rrhealth_final outseb ridge=0.00012;
  model cholesterolloss = age weight cholesterol triglycerides hdl ldl height;
  plot / ridgeplot nomodel nostat;
  title 'Health - Ridge Regression Calculation';

run;

proc print data=rrhealth_final;
  title 'Health - Ridge Regression Results';

run;
```

Ridge Regression Example

Before outseb

Obs	_MODEL_	_TYPE_	_DEPVAR_	_RIDGE_	_PCOMIT_	_RMSE_	Intercept	Age	Weight	Cholesterol	Triglycerides	HDL	LDL	Height	CholesterolLoss
1	MODEL1	PARMS	CholesterolLoss			26.0275	18.3859	0.63264	-0.29825	-169.201	2.67536	169.192	169.525	-0.26426	-1
2	MODEL1	RIDGEVIF	CholesterolLoss	.00012		-	-	1.88080	2.35783	8.980	2.29088	2.734	7.988	1.79521	-1
3	MODEL1	RIDGE	CholesterolLoss	.00012	-	26.4517	41.7689	0.30929	-0.20788	-0.192	-0.02197	0.321	0.520	-0.79988	-1

After outseb

Obs	_MODEL_	_TYPE_	_DEPVAR_	_RIDGE_	_PCOMIT_	_RMSE_	Intercept	Age	Weight	Cholesterol	Triglycerides	HDL	LDL	Height	CholesterolLoss
1	MODEL1	PARMS	CholesterolLoss	-		26.0275	18.3859	0.63264	-0.29825	-169.201	2.67536	169.192	169.525	-0.26426	-1
2	MODEL1	SEB	CholesterolLoss	-		26.0275	86.4527	1.68351	0.24873	157.596	2.51627	157.467	157.592	1.45480	-1
3	MODEL1	RIDGEVIF	CholesterolLoss	.00012			-	1.88080	2.35783	8.980	2.29088	2.734	7.988	1.79521	-1
4	MODEL1	RIDGE	CholesterolLoss	.00012		26.4517	41.7689	0.30929	-0.20788	-0.192	-0.02197	0.321	0.520	-0.79988	-1
5	MODEL1	RIDGESEB	CholesterolLoss	.00012		26.4517	85.0039	1.68266	0.23774	0.328	0.07522	0.624	0.336	1.38822	-1

Elastic Net

Elastic Net Regression

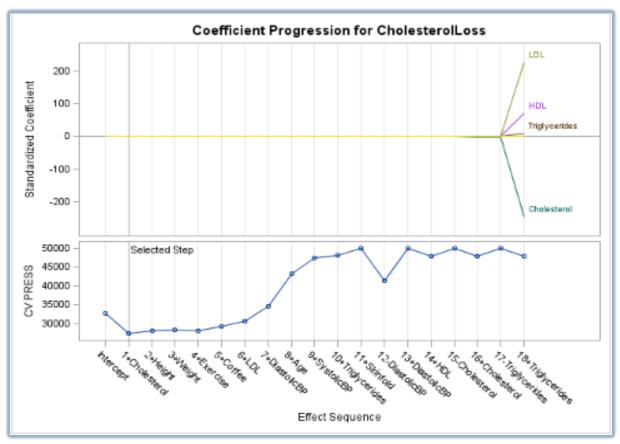
- Logic
 - Both LASSO and Ridge pros and cons
 - Elastic Net attempts to take the best features of these two procedures and use them at the same time

Elastic Net Example

- Similar options to LASSO
- STEPS = specifies number selection steps to be performed
- L2 = specifies value of ridge parameter

```
/* Elastic Net */
proc glmselect data=health plots=coefficients;
   model cholesterolloss = age weight cholesterol triglycerides
   hdl ldl height skinfold systolicbp diastolicbp exercise coffee
   / selection=elasticnet(steps=120 choose=cv) cvmethod=split(4);
   title 'Health - Elastic Net Regression Calculation';
run;
```

Combating Multicollinearity Elastic Net Example



Step	Effect Entered	Effect Removed	Number Effects In	CV PRESS
0	Intercept		1	32755.1101
1	Cholesterol		2	27348.8251*
2	Height		3	27971.7591
3	Weight		4	28235.2852
4	Exercise		5	28030.3185
5	Coffee		6	29198.0055
6	LDL		7	30535.9524
7	DiastolicBP		8	34489.6987
8	Age		9	431 19.5067
9	SystolicBP		10	47414.7455
10	Trigly cerides		11	48196.2793
11	Skinfold		12	49928.4795
12		DiastolicBP	11	41468.3373
13	DiastolicBP		12	49928.4795
14	HDL		13	47896.2578
15		Cholesterol	12	49908.5770
16	Cholesterol		13	47896.2619
17		Triglycerides	12	49870.0391
18	Trigly cerides		13	47896.2116
	* Opt	imal Value of 0	Criterion	

USERS PROGRAM

RUM 2019

Combating Multicollinearity Elastic Net Example

Comparing LASSO, Ridge, and Elastic Net

LASSO Regression Advantage/Disadvantage

LASSO Advantages

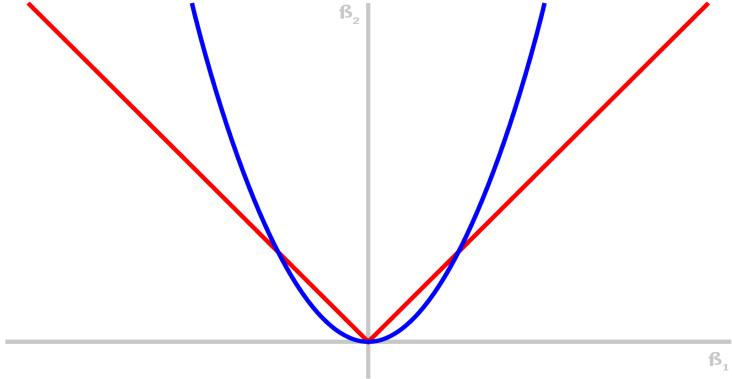
- Great if goal is to reduce the number of variables
- It enforces sparcity in parameter selection and inclusion
- Does have a quadratic programming problem, but can be solved through use of LAR solution or other approaches

LASSO Disadvantages

- If group of predictors are highly correlated, LASSO tends to pick only one of them and will shrink the others to zero
- LASSO can not perform grouped selection

LASSO Regression

- LASSO regression adjustment
- Linear regression

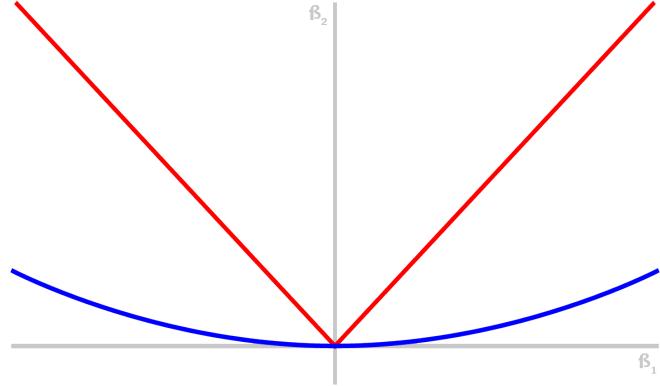


Ridge Regression Advantage/Disadvantage

- Ridge Advantages
 - It is great if your goal is to adjust for multicollinearity with grouped selections
 - Produces biased but smaller variance and smaller Mean Square Error (MSE)
 - Results in the explicit solution
- Ridge Disadvantages
 - Aforementioned biased results
 - Tends to shrink coefficients to near zero but can not produce a parsimonious model

Ridge Regression

- Ridge regression adjustment
- Linear regression

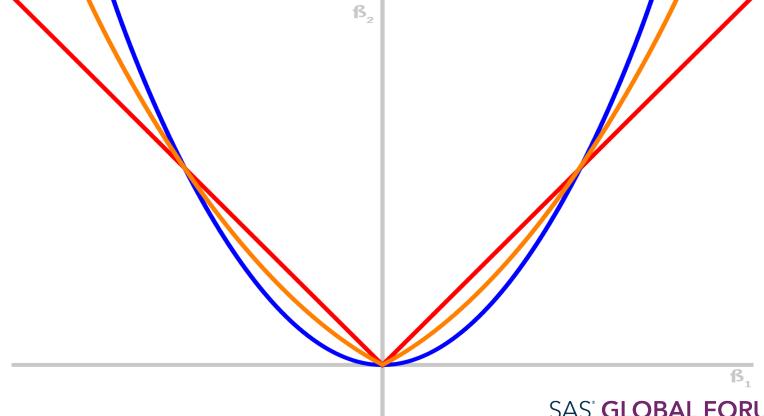


Elastic Net Advantage/Disadvantage

- Elastic Net Advantages
 - Enforce Sparsity
 - Has no limitation on the number of selected variables.
 - Encourages a grouping effect in the presence of highly correlated predictors
- Elastic Net Disadvantages
 - Naïve elastic net can suffer from double shrinkage
 - Needs to be carefully employed

LASSO / Ridge / Elastic Net

- Ridge regression adjustment
- LASSO regression
- Elastic Net



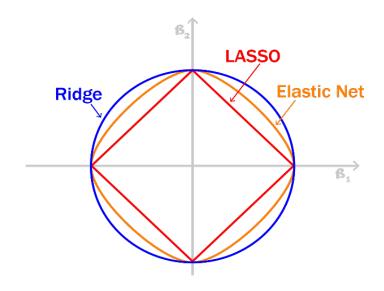
Conclusion

Summary

- When multicollinearity is present in data
 - Ordinary least squares estimators are imprecisely estimated
 - This could result in misleading or improper conclusions
- If your goal is to understand how your predictors impact your outcome
 - Then multicollinearity poses a problem
 - Therefore, it is essential to detect and solve this issue before estimating the parameters based on the fitted regression model
- The detection of multicollinearity is important

Conclusions

- Once multicollinearity is detected
 - Necessary to introduce appropriate changes in model specification to combat
- Remedial measures can help solve this problem
 - Removing a variable
 - Principal Component Regression
 - Regularization Techniques
 - L1: Lasso Regression
 - L2: Ridge Regression
 - Elastic Net



Thank You!!

Name: Deanna Schreiber-Gregory

Organization: Henry M Jackson Foundation

Title: Data Analyst, Research Associate

Location: Bethesda, MD

E-mail: d.n.schreibergregory@gmail.com

On LinkedIn

Name: Karlen Bader

Organization: Henry M Jackson Foundation

Title: Research Assistant

Location: Bethesda, MD

