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Time Series and Longitudinal Data

Monthly Traffic Injuries in Italy (in thousands) Region-Specific Cigarette Sales Patterns
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Scatter Plots of the Monthly Temperature Series Growth Profiles Grouped by Iron and Infection
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Linear State Space Models (SSMs)

 SSMs are MIXED effects models that are customized for sequential data:
* the fixed and random effects can vary with time
* thetime-varyingeffects, o, are called states, which evolve autoregressively
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 SSMs incorporate ARIMA (or Box-Jenkins) models and many others as special cases.
e SSMs are also called:

* Unobserved componentsmodels (UCMs)

e Structural time series models
* Allmodelsdiscussed in thislecture have this of state-space form



SSM-Based Decomposition of Response Curves

Like an ANOVA (analysis of variance) model, an SSM decomposes the response curves into different
components:

The terms inthe model represent differentaspects of the response curve:
 Thetrendrepresentstime-varyingintercept andis often modeled asa smooth curve
* Regression effectsreflect changes inthe response curve due to external effects
* Periodicpatternsare usually associated with the seasonal fluctuations
* The noisecan be simple Gaussian white noise or could be an Autoregressive Moving Average
(ARMA) noise, which captures short-term temporal correlation
* Therecan be manyother types of patterns
A Modelis formulated by choosing suitable patterns froma large library of commonly needed patterns.



PROC UCM, PROC SSM and PROC CSSM

PROC UCM and PROC SSM are part of SAS/ETS.
PROC UCM is used for modeling
PROC SSM is more general. Itis used for modeling:
* Univariate and multivariate time series
* Panelsof Univariate and multivariate time series
* Univariate and multivariate longitudinal data
PROC CSSM, which is part of SAS VIYA/Econometrics, is a Cloud-enabled version of PROC SSM.
PROC CSSM has more features and is more performant.

PROC SSM programs can be converted to PROC CSSM with very minor changes.



Univariate Time Series Analysis by PROC UCM

PROC UCM enables you to easily specify models that capture:
A wide variety of trend patterns (random walk, local linear trend, etc.)

* Avarietyof periodic effects, with parsimonious handling of long seasonal patterns

Different types of regression effects, including
e Time-invariantand time-varyingregression coefficients
* Nonlinear effects by using splines

* Lagged regression effects (transfer-function)

Lagged-response effects (differencing, lagged response terms)

White and colored noise (ARMA) noise

Rich diagnostics: Residual analysis, Information criteria, structural break detection, ...



A Transfer-Function Model for the Monthly Italian Traffic Accident Data
Example 10 in the UCM Doc and a Case Study in Pelagatti (2015)

Monthly Traffic Injuries in Italy (in thousands)

proc ucm data=ltaly;
id date interval=month;

. model Injured = shift03;
7 level variance=0 noest;
slope;
257 season length=12 type=trig;
tf pulse03 den=1 tfstart=0 plot=smooth;
20 irregular;
estimate plot=(panel residual) like=marginal;
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Question: How did the July 2003 intervention impact the time
series?

Ve =t + Y +shift03 « f +{; + €
response = integrated RW trend + monthly seasonal effect + permanent shift startingon July 2003 +
transient effect of July 2003 intervention + white noise


https://go.documentation.sas.com/doc/en/pgmsascdc/v_027/etsug/etsug_ucm_examples10.htm

Smoothed (Full-Sample) Estimates of Model Components for the Injured Series

Smoothed Level Component
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Model-Based Decomposition of the Injured Series

Smoothed Trend for Injured Sum of Smoothed Trend and Regres=ion Effects for Injured
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Analysis of More General Sequence Data by PROC SSM/PROC CSSM

* With PROC SSM/CSSM you can:

* Model sequential data, such as univariate and multivariate time series, univariate and multivariate
longitudinal data, and hierarchical data that result from multi-level, multi-subject, longitudinal

studies.
* Specify very general SSMs:
* Composea complex model from smaller pieces
* Key-word supportto specify commonly needed model pieces
* Rich language to explicitly specify the SSM system matrices, if needed
* Rich diagnostics: Residual analysis, Information criteria, structural break detection, ...

* In addition, also supports scoring-based what-if-analysis, and ongoing monitoring of

streamingdata



Joint Modeling of Monthly Temperature from Three W eather Data Sources
Example 12 in the SSM Doc

CRU: Climate Research Unit Univ, from Jan 1850. Scatter Plots of the Monthly Temperature Series
GISS: Goddard Inst for Space Studies, from Jan 1880.
UAH: Global satellite data from Dec 1978. 1
For all these series the readings, in centigrade, end atJan 2012.
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A model proposed by Ansley and de Jong (2015) in Inferring and
Predicting Global Temperature Trends:
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All three series share the same trend component, 1;, which is an
integrated RW, and the colored noise components for each series
also share some common aspects (not shown).

In their paper, Ansley and de Jong comment on the necessity of joint modeling of these three series for obtaining better
estimate of the underlying trend and the superiority of this type of modeling over commonly used curve fitting techniques in
climate science.


https://go.documentation.sas.com/doc/en/pgmsascdc/v_027/etsug/etsug_ssm_examples12.htm

Model-Based Extrapolation of Temperature Trend and Its Slope

The top right plot shows the temp trend, and the
lower right plot shows the slope of the temp
trend.

The lower left plot shows the temp trend line
alongwith the appropriately adjusted observed
temp readings.

The trend-slope plot shows that from the 1970s
to 2000, the slopeis positive and statistically
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Modeling Weight Profiles of Cows in a Longitudinal Study
Slightly Altered Version of Example 4 in the SSM Doc

*  Growth profiles of 26 cows are monitored over a 22-month period.

* Their weights are not measured at equally spaced time points and
the spacing of the time points can be different for each cow.

* Cows are grouped in a 2 x 2 design: receiving iron dosing or not, is
infected by M. paratuberculosis or not

Goal of the study: compare the growth profiles of cows in each category.

A model for the weight of j-th cow in the i-th group at time t:

Weight
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is the group-mean-curve for the i-th group (i=1, 2, 3 4), modeled as a 2"%-order-polynomial smoothing-

spline (a fixed-effect-curve). A functional fixed effect.

is the deviation curve of the j-th cow from the i-th mean curve, modeled as a 1st-order-polynomial

smoothing-spline (a random-effect-curve). A functional random effect.

is the observation error, modeled as white noise



https://go.documentation.sas.com/doc/en/pgmsascdc/v_027/etsug/etsug_ssm_examples04.htm

Cow-Growth Study: Full-Sample Component Estimates

Mean Growth Profiles Grouped by Iron and Infection
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Cow Growth Study: Group-Mean Contrasts

Estimated Contrast between the Groups 4 and 1

The curve in the right-hand side plot shows the estimate of the difference
between the group-mean curves of Group 1 and Group 4, (i1; — Uar),
with 95% confidence band (pointwise).

It shows that the difference in these mean curves is statistically significant
throughout the observation period.

Groupl:iron=0, infection=0, and Group4: iron=1, infection=1.

Of course, similar contrasts can be estimated for other combinations.
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The SSMs that are used to model longitudinal data must permit arbitrary spacing of time points. Such SSMs are called
continuous-time SSMs.

Such continuous-time SSMs provide very interpretable models for multi-level, multi-subject longitudinal studies.

For more information, see the SGF paper: Functional Modeling of Longitudinal Data with the SSM Procedure by Rajesh
Selukar.



https://support.sas.com/resources/papers/proceedings15/SAS1580-2015.pdf

Additional Info

The UCM procedure documentation.

The SSM procedure documentation.

The CSSM procedure documentation.

Books (loosely ordered by degree of technical detail):

* Pelagatti, M. M. (2015). Time Series Modelling with Unobserved Components. Boca Raton, FL: CRC
Press.
* Harvey, A. C. (1989). Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge:
Cambridge University Press.
* Durbin, J., and Koopman, S. J. (2012). Time Series Analysis by State Space Methods. 2nd ed. Oxford:
Oxford University Press.

SGF Papers and BLOGS:
* Selukar, R. S. (2017). “Detecting and Adjusting Structural Breaks in Time Series and Panel Data Using the

SSM Procedure.”
» Selukar, R.S. (2021). “Using State Space Models for the Stability Monitoring of Streaming Data.”



https://go.documentation.sas.com/doc/en/pgmsascdc/v_027/etsug/etsug_ucm_toc.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/v_027/etsug/etsug_ssm_toc.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/v_029/casecon/casecon_cssm_toc.htm
https://support.sas.com/resources/papers/proceedings17/SAS0456-2017.pdf
https://blogs.sas.com/content/subconsciousmusings/2021/10/26/using-state-space-models-for-the-stability-monitoring-of-streaming-data/

Closing Remarks

Linear SSMs, which got their startin engineering, have been in use since the 1960s.
In recent decades they have found applicability in many fields other than engineering.
PROC CSSM, PROC SSM, and PROC UCM provide very convenient framework for SSM-based data analysis.
Development of all these procedures remains active:
* New features foradded modeling capabilities
* Improved scalability for handlinglarger and more complex SSMs

For modeling/syntax help you can contact me at rajesh.selukar@sas.com

Thanks for listening!!


http://www.sas.com/
mailto:rajesh.selukar@sas.com

