Principal Component Analysis Demystified

Caroline Walker Warren Rogers LLC

The new features...

Are linear transformations of the original features

- Are linear transformations of the original features
- Are linearly uncorrelated with each other

- Are linear transformations of the original features
- Are linearly uncorrelated with each other
- Retain maximum variance from the original feature set

- Are linear transformations of the original features
- Are linearly uncorrelated with each other
- Retain maximum variance from the original feature set

Feature	Variance
F1	1.468
F2	0.716

Feature	Variance
Α	0.328

Feature	Variance
А	0.328
F1	1.468
F2	0.716

Feature	Variance	
Α	0.328	
F1	1.468	2 19/
F2	0.716	2.104

Feature	Variance	4=0/
Α	0.328	— 15%
F1	1.468	2 18/
F2	0.716	2.104

Feature	Variance
В	1.869

Feature	Variance
В	1.869
F1	1.468
F2	0.716

Feature	Variance	
В	1.869	
F1	1.468	2 19/
F2	0.716	2.104

Feature	Variance	0.604
В	1.869 🗲	86%
F1	1.468	2 19/
F2	0.716	2.104

Finding the Optimal Solution Steps of PCA

Finding the Optimal Solution Steps of PCA

 Calculate the covariance* matrix of the original feature set.

Finding the Optimal Solution Steps of PCA

- 1. Calculate the covariance* matrix of the original feature set.
- 2. Find the eigenvectors and eigenvalues of this covariance matrix.

Finding the Optimal Solution Steps of PCA

- 1. Calculate the covariance* matrix of the original feature set.
- 2. Find the eigenvectors and eigenvalues of this covariance matrix.
- 3. Order the eigenvectors according to the magnitude of their eigenvalues.

Finding the Optimal Solution Steps of PCA

- 1. Calculate the covariance* matrix of the original feature set.
- 2. Find the eigenvectors and eigenvalues of this covariance matrix.
- 3. Order the eigenvectors according to the magnitude of their eigenvalues.
- 4. The eigenvector v_1 will show the direction of maximum variance within the data set.

$$\lambda_1 = 2.038$$

$$\lambda_2 = 0.146$$

Feature	Variance
PC1	2.038

Feature	Variance	
PC1	2.038	
F1	1.468	
F2	0.716	

Feature	Variance	
PC1	2.038	
F1	1.468	2 194
F2	0.716	2.104

$$\lambda_2 = 0.146$$

Total variance: 58

USERS PROGRAM

SAS' GLOBAL FORUM 2020

USERS PROGRAM

SAS' GLOBAL FORUM 2020

USERS PROGRAM

SAS' GLOBAL FORUM 2020

Cumulative Proportional Eigenvalue

Principal Component ID

PCA is a dimensionality reduction technique.

PCA is a dimensionality reduction technique.

PCA finds the new feature set which retains maximum variance.

PCA is a dimensionality reduction technique.

PCA finds the new feature set which retains maximum variance.

PCA is a dimensionality reduction technique.

PCA finds the new feature set which retains maximum variance.

minimizes reconstruction error

PCA is a dimensionality reduction technique.

PCA finds the new feature set which retains maximum variance.

minimizes reconstruction error

 New features are linear transformations of original features

PCA is a dimensionality reduction technique.

PCA finds the new feature set which retains maximum variance.

minimizes reconstruction error

 New features are linear transformations of original features New features are linearly uncorrelated

Further Reading

• Jolliffe, I.T. 2002. *Principal Component Analysis*, 2nd ed. New York, NY: Springer.

Further Reading

- Jolliffe, I.T. 2002. *Principal Component Analysis*, 2nd ed. New York, NY: Springer.
- Shlens, Jonathon. 2014 "A Tutorial on Principal Component Analysis" https://arxiv.org/pdf/1404.1100.pdf
- Wiskott, Laurenz. 2013 "Lecture Notes on Principal Component Analysis" http://cs233.stanford.edu/ReferencedPapers/LectureNotes-PCA.pdf

Further Reading

- Jolliffe, I.T. 2002. *Principal Component Analysis*, 2nd ed. New York, NY: Springer.
- Shlens, Jonathon. 2014 "A Tutorial on Principal Component Analysis" https://arxiv.org/pdf/1404.1100.pdf
- Wiskott, Laurenz. 2013 "Lecture Notes on Principal Component Analysis" http://cs233.stanford.edu/ReferencedPapers/LectureNotes-PCA.pdf
- "Principal Component Analysis Explained Visually" by Victor Powell and Lewis Lehe http://setosa.io/ev/principal-component-analysis/

Thank you!

Caroline Walker cwalker@warrenrogers.com