
Copyright © SAS Institute Inc. All r ights reserved.

Data Cleaning Using SAS
Programming
Boston SAS Users Group SAS Blowout

October 18, 2024

Jacqueline Johnson, DrPH

Principal Analytical Training Consultant, SAS

Jacqueline.Johnson@sas.com

mailto:Jacqueline.Johnson@sas.com

Copyright © SAS Institute Inc. All r ights reserved.

Outline

– Using Perl regular expressions to detect data errors in character variables.

– Using SAS formats to standardize data.

– Creating integrity constraints to restrict data values allowed in a data set.

Copyright © SAS Institute Inc. All r ights reserved.

Reference

• Webinar material comes from this book!

• Available on Redshelf and Amazon.

• Programs and datasets are downloadable for
free from the Ron Cody SAS Author Page.
Includes several helpful macros!

SAS Press Book

https://redshelf.com/app/ecom/book/1878338/codys-data-cleaning-techniques-using-sas-third-edition-1878338-9781635260670-ron-cody
https://www.amazon.com/Codys-Cleaning-Techniques-Using-Third/dp/1629607967?ref_=ast_sto_dp
https://support.sas.com/en/books/authors/ron-cody.html

Copyright © SAS Institute Inc. All r ights reserved.

Part 1- Perl Regular Expressions

• Regular expressions can be used to describe text patterns.

• A regular expression starts and ends with a delimiter, the most common
being a forward slash (/).

• For example, the expression /cat/ will match the word "cat".

• The power of a regular expression is that there are meta-characters that
can reference classes of characters, such as all digits or all upper- and
lowercase letters.

• You can use regular expressions in SAS functions to verify if a string
complies with a particular pattern.

Copyright © SAS Institute Inc. All r ights reserved.

Some Common Expressions

Regular Expression What it Matches

\d Any digit

\D Any non-digit (Expressions are case sensitive)

\s Whitespace character (blank, tab, line feed, etc.)

\b Word boundary (blank, beginning or end of string)

\w Word character (letter or _)

^ Beginning of a string

$ End of a string

[abc] An 'a' or a 'b' or a 'c'

[0-9] Digits 0 to 9

High|Low The string 'High' or 'Low'; the | means 'or'

Copyright © SAS Institute Inc. All r ights reserved.

Some Examples of Regular Expressions

Expression String Result

/\d\d\d/ 123 Match at position 1

12345 Match at position 1

abc888xyz Match at position 4

/^\d\d\d/ abc888xyz No match. ^ means start at the
beginning of the line

/\(\d\d\d\)/ (800) Match at position 1

In the last example, you need to precede the open and closed
parentheses with a \ because parentheses in a regular expression have
another meaning (grouping) and the \ before either '(' or ')' means to
treat the character as a parenthesis, not a grouping character.

Copyright © SAS Institute Inc. All r ights reserved.

Repetition Operators

Examples:

/\d{4}/ matches four digits

/\d{4,6}/ matches between four and six digits

/cat*/ matches "ca" followed by 0 or more "t’s"

/cat?/ matches "ca" followed by 0 or 1 "t"

/c(at)?/ matches "c" followed by zero or one occurrences of "at"

/\d\d+/ matches one or more digits

{n} Matches previous expression n times.

{n,m} Matches previous expression at least n times and not
more than m times.

* Matches previous expression zero or more times.

+ Matches previous expression one or more times.

? Matches previous expression zero or one time.

Copyright © SAS Institute Inc. All r ights reserved.

Expression Example – US and Canada Phone Numbers

Return phone numbers following these rules:

• Contains a three-digit area code, then a hyphen,
then a three-digit prefix, then another hyphen, and
a four-digit line number.

• The first digit of the area code and the prefix
cannot start with a 0 or 1.

Copyright © SAS Institute Inc. All r ights reserved.

Expression Example – US and Canada Phone Numbers

Copyright © SAS Institute Inc. All r ights reserved.

Expression Example

Which Perl regular expression will not find the values EF3, EF-3, EF4, and EF-4?

 '/(EF3|EF-3|EF4|EF-4)/’

 '/(EF-?3|EF-?4)/’

 '/EF-?(3|4)/’

 '/EF-?[34]/’

 '/EF.[34]/'

(…) Parentheses are for grouping.

| Vertical line is for OR situation.

? Matches the preceding character 0 or 1
times.

[…] Matches a character in the brackets.

. Matches any character.

Copyright © SAS Institute Inc. All r ights reserved.

Testing Expressions with the PRXMATCH Function

• Regular-Expression is a regular expression
– Either an expression in quotation marks or the name of a character

variable that represents the expression.

• String is the character value that you are testing.

• If a match is found, the function returns the value of the starting position in
the string.

• If a match is not found, the function returns a 0.

PRXMATCH (Regular Expression, String);

Copyright © SAS Institute Inc. All r ights reserved.

Example – Checking DX
DX should be three numbers, a decimal, then three numbers

title1 "Errors in DX Values";

 proc print data=clean.patients(keep=patno dx);

 where prxmatch("/\d\d\d\.\d\d\d/",Dx) = 0;

 run;

Copyright © SAS Institute Inc. All r ights reserved.

Example – Checking Zip Codes
Zip should be 5 digits or 5 digits, a dash, then 4 digits

title1 "Errors in Zip";

 proc print data=zip noobs;

 where prxmatch("/\d{5}(-\d{4})?/",Zip)=0;

 run;

Copyright © SAS Institute Inc. All r ights reserved.

Part 2 – Data Standardization

Name is entered in several different forms
that mean the same company

Formatted values
we want to use

Copyright © SAS Institute Inc. All r ights reserved.

Using a Format to Standardize Values

proc format;
 value $Company
 "International Business Machines, Inc." =
 "International Business Machines"
 "IBM" = "International Business Machines"
 "Little & Sons" = "Little and Sons"
 "Little and Son" = "Little and Sons"
 "MacHenrys" = "McHenrys"
 "MacHenries" = "McHenrys"
 "McHenry's" = "McHenrys";
run;

Standard values are to the right of the = sign

Copyright © SAS Institute Inc. All r ights reserved.

Using a PUT Function to Create a Formatted Variable

data Standard;
 set Company;
 Standard_Name = put(Name,$Company.);
run;

Copyright © SAS Institute Inc. All r ights reserved.

Create a Format From a SAS Dataset

• Typing formatted values directly into PROC FORMAT code can be time
consuming.

• Instead, type the values elsewhere then create a SAS dataset from the file.

• Example:

– Create an Excel file with the desired changes

– Create a SAS dataset from the Excel file using PROC IMPORT or the
XLSX libname engine

Copyright © SAS Institute Inc. All r ights reserved.

Create the Initial SAS Dataset

proc import datafile=“c:/Company_Standards.xlsx"
 dbms=xlsx
 out=work.standard replace;
run;

Copyright © SAS Institute Inc. All r ights reserved.

Add Control Variables to the Dataset

• Start – The starting value in a range. If there is only one value (as in this
case), you do not have to include a value for End in the control data set.

• End – This is an ending value if you have a range such as 10 to 20 (with 10
being the Start value and 20 being the end value).

• Label – This is the format label.

• Fmtname – This is the name of the format that you want to create. Do not
include a dollar sign in the name, even if this is a character format.

• Type – Use a 'C' if you are creating a character format; use an 'N' if you are
creating a numeric format.

Copyright © SAS Institute Inc. All r ights reserved.

Creating the Control Dataset

data Control;
 set Standard
 (rename=(Name=Start
 Standard_Name=Label));
 retain Fmtname "Company" Type "C";
run;

Copyright © SAS Institute Inc. All r ights reserved.

Creating the New Format: $Company.

proc format library=work

 cntlin=Control fmtlib;

 run;

Copyright © SAS Institute Inc. All r ights reserved.

Applying the New Format

title1 "With Format Applied";

 proc print data=company noobs;

 var name;

 format name $company.;

 run;

Copyright © SAS Institute Inc. All r ights reserved.

Part 3 - Integrity Constraints

– Set of validation rules that can restrict data values from being added,
deleted, or updated

– Two general categories

• General (restrictions within a single file)

• Referential (involves a reference to a second file)

– Created in PROC DATASETS or PROC SQL

• We will demonstrate PROC DATASETS

Copyright © SAS Institute Inc. All r ights reserved.

General Integrity Constraints

– CHECK
Limits data values based on a user-defined constraint.

– NOT NULL
Disallows missing (null) values.

– UNIQUE
Requires a specified variable to be unique.

– PRIMARY KEY
Requires a specified variable or combination of variables to be both
nonmissing and unique.

Copyright © SAS Institute Inc. All r ights reserved.

Example Data Set: HEALTH

Goal: Add integrity constraints to this dataset

Copyright © SAS Institute Inc. All r ights reserved.

Creating the Integrity Constraints

proc datasets library=work nolist;

modify Health;

 ic create Gender_chk = check
 (where=(Gender in('F','M')))
 message="Gender must be F or M"
 msgtype=user;

 ic create Hr_chk = check
 (where=(HR between 40 and 100))
 message="HR must be between 40 and 100"
 msgtype=user;

Limit valid data
values for Gender

Limit valid data
values for HR

Copyright © SAS Institute Inc. All r ights reserved.

Creating the Integrity Constraints (cont.)

 ic create SBP_Chk = check

 (where=(SBP between 50 and 240 or SBP is missing))

 message="SBP must be between 50 and 240 or missing"

 msgtype=user;

 ic create DBP_Chk = check

 (where=(DBP between 35 and 130 or DBP is missing))

 message="DBP must be between 35 and 130 or missing"

 msgtype=user;

 ic create ID_Chk = primary key (Patno)

 message="Patno must be unique and non-missing"

 msgtype=user;

run;

quit;

Limit valid data
values for SBP

Limit valid data
values for DBP

Limit valid data
values for Patno

Copyright © SAS Institute Inc. All r ights reserved.

Additional Information in PROC CONTENTS
After Running Integrity Constraints Program

 ods select IntegrityConstraints;

 proc contents data=Health;

 run;

Copyright © SAS Institute Inc. All r ights reserved.

Append New Data to the HEALTH Data set
Cells in red are data violations

• Violates rule that 40<=HR<=100

• Violates rule that Patno must be unique

• Violates rule that 50<=SBP<=240 or
SBP missing

• Violates rule that Gender in (“F” or “M”)

proc append base=Health data=New;
 run;

Copyright © SAS Institute Inc. All r ights reserved.

Log Notes Rejecting Observations with Errors
Only One New Observation is Appended

NOTE: Appending WORK.NEW to WORK.HEALTH.

WARNING: Patno must be unique and non-missing , 1 observations rejected.

WARNING: Gender must be F or M , 1 observations rejected.

WARNING: SBP must be between 50 and 240 or missing , 1 observations rejected.

WARNING: HR must be between 40 and 100 , 1 observations rejected.

NOTE: There were 5 observations read from the data set WORK.NEW.

NOTE: 1 observations added.

NOTE: The data set WORK.HEALTH has 7 observations and 5 variables.

Copyright © SAS Institute Inc. All r ights reserved.

Removing an Integrity Constraint

proc datasets library=work nolist;
 modify Health;
 ic delete Gender_chk;
 quit;

 ods select IntegrityConstraints;
 proc contents data=Health;
 run;

Copyright © SAS Institute Inc. All r ights reserved.

Reference

• Webinar material comes from this book!

• Available on Redshelf and Amazon.

• Programs and datasets are downloadable for
free from the Ron Cody SAS Author Page.
Includes several helpful macros!

SAS Press Book

https://redshelf.com/app/ecom/book/1878338/codys-data-cleaning-techniques-using-sas-third-edition-1878338-9781635260670-ron-cody
https://www.amazon.com/Codys-Cleaning-Techniques-Using-Third/dp/1629607967?ref_=ast_sto_dp
https://support.sas.com/en/books/authors/ron-cody.html

Copyright © SAS Institute Inc. All r ights reserved.

Thank you!

	Default Section
	Slide 1: Data Cleaning Using SAS Programming
	Slide 2: Outline
	Slide 3: Reference
	Slide 4: Part 1- Perl Regular Expressions
	Slide 5: Some Common Expressions
	Slide 6: Some Examples of Regular Expressions
	Slide 7: Repetition Operators
	Slide 8: Expression Example – US and Canada Phone Numbers
	Slide 9: Expression Example – US and Canada Phone Numbers
	Slide 10: Expression Example
	Slide 11: Testing Expressions with the PRXMATCH Function
	Slide 12: Example – Checking DX
	Slide 13: Example – Checking Zip Codes
	Slide 14: Part 2 – Data Standardization
	Slide 15: Using a Format to Standardize Values
	Slide 16: Using a PUT Function to Create a Formatted Variable
	Slide 17: Create a Format From a SAS Dataset
	Slide 18: Create the Initial SAS Dataset
	Slide 19: Add Control Variables to the Dataset
	Slide 20: Creating the Control Dataset
	Slide 21: Creating the New Format: $Company.
	Slide 22: Applying the New Format
	Slide 23: Part 3 - Integrity Constraints
	Slide 24: General Integrity Constraints
	Slide 25: Example Data Set: HEALTH
	Slide 26: Creating the Integrity Constraints
	Slide 27: Creating the Integrity Constraints (cont.)
	Slide 28: Additional Information in PROC CONTENTS
	Slide 29: Append New Data to the HEALTH Data set
	Slide 30: Log Notes Rejecting Observations with Errors
	Slide 31: Removing an Integrity Constraint
	Slide 32: Reference
	Slide 33: Thank you!

